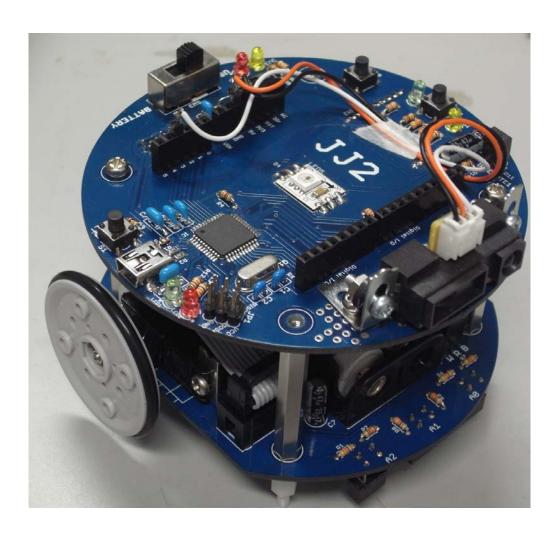
『ロボットの製作(Arduino 互換マイコンボード)』資料 1.3 版

2014/7/12(土) 10:00~ 徳島大学 大学開放実践センター

辻 明典

目次

1.	ロボットの構成
1.1.	
1.1.	
2.	ARDUINO 互換マイコンボード
2.1.	基本構成
2.2.	
2.3.	
2.4.	Arduino ピン割り当て
2.5.	ARDUINO 互换基板(表)
2.6.	ARDUINO 互换基板(裏)
2	部品一覧
J.	
3.1.	ARDUINO 互換ボードの部品
4.	部品実装10
4.1.	工具の準備1
4.2.	半田付けのコツ
5.	付録
•	74.45 R. H.
6.	改編履歴


1. ロボットの構成

1.1. 基本構成

ロボットは、Arduino 互換(Arduino Legonardo)マイコンボードとモータドライバボードの 2 枚より構成される.

- (1) Arduino 互換マイコンボード
 - ① ATMega 32U4 マイコン(AVR 社)
 - ② フルカラーLED(1線シリアル接続)
 - ③ ブザー (圧電素子)
 - ④ 赤外線受信センサ(リモコン用)
 - ⑤ Arduino 互換拡張ソケット
 - ⑥ ZigBee 無線モジュール XBee (オプション)
- (2) モータドライバボード
 - ① サーボモータ(GWS 社 PICO/STD)
 - ② 電池ソケット(単3×2本:ニッケル水素充電池またはアルカリ乾電池)
 - ③ フォトインタラプタ
 - 4 車輪
 - ⑤ キャスター
 - ⑥ 高効率 DCDC コンバータ(5V 出力)

1.2. ロボットの完成写真

2. Arduino 互換マイコンボード

2.1. 基本構成

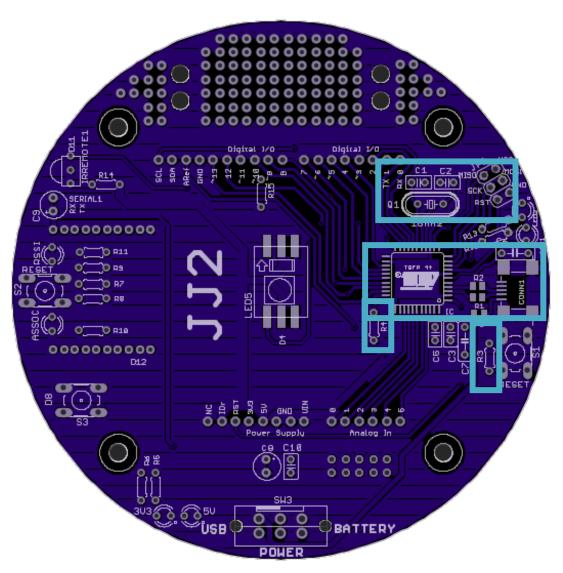
Arduino 互換ボードには Arduino Legonardo ファームウェアが書き込まれており、USB 経由でプログラムの書き換えができる.

2.2. 電源供給

ロボットへの電源供給は USB または電池(単 3×2 本)から行う.電源の状態は、基板上の+5V、+3.3Vの LED により確認する.

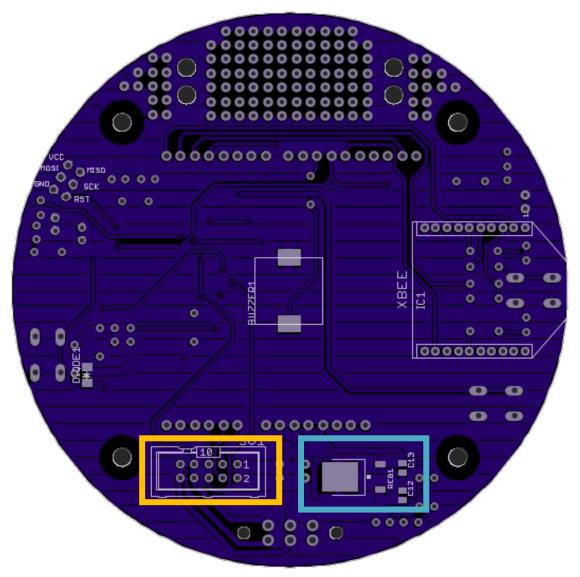
電源スイッチの状態	供給元	注釈
USB	パソコン: USB 端子 (5V / 500mA)	
BATTERY	電池:単3電池×2	ニッケル水素充電池またはアルカリ乾電池

2.3. プログラムの書き込み


電源スイッチを,『USB』または『BATTERY』(電池使用時)のいずれかにセットして,USB ケーブルをパソコンに接続した後,Arduino ソフトウェアよりプログラムの書き込みを行う.

2.4. Arduino ピン割り当て

Arduino ピン	機能	注釈
D4	フルカラーLED	FastSPI_LED2 ライブラリ使用
D8	タクトスイッチ	digitalRead 使用
D10	ブザー(圧電素子)	AnalogWrite または Tone ライブラリ使用
D11	赤外線受信センサ(リモコン)	IRremote ライブラリ使用
D0(RXD1),D1(TXD1)	ZigBee 無線モジュール(XBee)(オプション)	Serial1 または XBee ライブラリ使用


※ Arduino 用拡張モジュールを使用するとき、上記の端子は使用できないので接続前に確認を行うこと.

2.5. Arduino 互換基板(表)

実装済み

2.6. Arduino 互換基板(裏)

基板裏に実装

実装済み

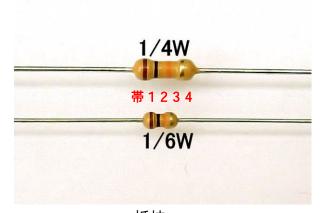
3. 部品一覧

3.1. Arduino 互換ボードの部品

(1) 未実装部品(表面)

1	実装順	名前	値	パッケージ	内容
	1	R5	1.5k (茶緑赤)	0204/5	抵抗(1/6W)
	2	R6	1k (茶黒赤)	0204/5	抵抗(1/6W)
	3	R12	1k (茶黒赤)	0204/5	抵抗(1/6W)
	4	R13	1k (茶黒赤)	0204/5	抵抗(1/6W)
	5	R14	47 (黄紫黒)	0204/5	抵抗(1/6W)
	6	R15	330 (橙橙茶)	0204/5	抵抗(1/6W)
	7	C3	0.1uF (104)	C025-025X050	積層セラミックコンデンサ
	8	C5	0.1uF (104)	C025-025X050	積層セラミックコンデンサ
	9	C7	1.0uF (105)	C050-025X075	積層セラミックコンデンサ
	10	C10	0.1uF (104)	C025-025X050	積層セラミックコンデンサ
	11	S1	SW	B3F-10XX	タクトスイッチ(マイコンのリセット)
	12	S3	SW	B3F-10XX	タクトスイッチ(マイコンの入力)
	13	C8	100uF/25V	E2,5-5	アルミ電解コンデンサ ※極性有 ※寝かせて実装
	14	C9	47uF/35V	E2,5-5	アルミ電解コンデンサ ※極性有 ※寝かせて実装
	15	LED 5V	LED 3MM 赤	LED3MM	LED 赤(電源 5V) ※極性有(基板上〇(カソード)
	16	LED 3V3	LED 3MM 黄	LED3MM	LED 黄(電源 3.3V) ※極性有(基板上〇(カソード)
	17	LED1	LED 3MM 緑	LED3MM	LED 緑(RX) <mark>※極性有(基板上〇(カソード</mark>)
	18	LED2	LED 3MM 赤	LED3MM	LED 赤(TX) <mark>※極性有(基板上〇(カソード</mark>)
	19	LED5	TAPE LED	TAPELED	フルカラーLED
	20	IRREMOTE1	GP1UXC4XQS	GP1UXC4XQS	赤外線受信モジュール(リモコン)
	21	U1	ARDUINOR3	ARDUINOR3-EXT	Arduino 拡張用ソケット(10P, 8P, 8P, 6P)
	22	SW3	SS22F06G5	SW_SS22	スライドスイッチ(電源スイッチ)

(次ページに続く)


(2) 未実装部品(裏面)

1	実装順	名前	値	パッケージ	内容
	1	BUZZER1	PKLCS1212E4001-R1	PKLCS1212E4001-R1	ブザー(圧電素子) ※ <mark>裏面に実装</mark>
	2	SV1	SV1_2x5	ML10	10P ボックスヘッダ ※裏面に実装 ※実装向き有り

(3) 実装済み部品

実装順	名前	値	パッケージ	内容
1	IC	ATMEGA32U4-AU	TQFP44	マイコン(USB 内蔵)
2	Q1	16 MHz	HC49/S	水晶発振子
3	C1	22 pF	C025-025X050	積層セラミックコンデンサ
4	C2	22 pF	C025-025X050	積層セラミックコンデンサ
5	C6	1.0uF(105)	C050-025X075	積層セラミックコンデンサ
6	FS	Fuse	R0805	チップヒューズ(500mA)
7	JP1	JP1	2X03	2x3 ピンヘッダ(AVR ISP MkII プログラム用)
8	CONN1	USB-MINIB	USB-MINIB	USB ミニコネクタ
9	R1	22 Ω	R2012	チップ抵抗
10	R2	22 Ω	R2012	チップ抵抗
11	R4	10k(茶黒橙)	0204/5	抵抗(1/6W)
12	REG1	NJM2845DL-33	TO252	低損失レギュレータ(3.3V)
13	C12	1.0 uF	C2012	チップ積層セラミック
14	C13	10 uF	C2012	チップ積層セラミック
15	R3	10 kF(茶黒橙)	0204/5	抵抗(1/6W)
16	C4	0.1 uF(104)	C025-025X050	積層セラミックコンデンサ

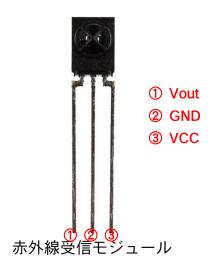
(4) 部品 (写真は、秋月電子通商、マルツパーツ館より抜粋)

サイズの目安

抵抗 (抵抗値の読み方,付録参照)

積層セラミックコンデンサ (値の読み方,付録参照)

アルミ電解コンデンサ (<mark>極性有り</mark>,足の長さまたはマイナス表記)


タクトスイッチ(押している間 ON)

LED(極性有り:基板上(K)に○印)

スライドスイッチ(2極2回路)

付ける)(実装向き有り)

フルカラーLED(裏の両面テープを基板に ソケット(6P)(長時間加熱するとプラスチッ クが溶けるので注意)

ブザー (圧電素子) (半田付けのこつ参照)

10P ボックスヘッダ (切り欠き位置を確認)

4. 部品実装

4.1. 工具の準備

基板に部品を半田付けするために必要な工具を次に挙げる.

(1) 半田ごて

30W 程度, または温度調整機能付き(300 度程度)

(2) 半田ごて台 半田ごてを置く台

- (3) 半田(鉛フリー)
 - 0.6mm 程度を推奨
- (4) 半田吸い取り器, 半田吸い取り線 半田づけの失敗を補修
- (5) 半田リフレッサー(オプション) 小手先が酸化したときの復活に使用
- (6) ニッパ 抵抗・コンデンサの足や配線を切断
- (7) フラックス(オプション)半田ののりを良くします

- (8) ピンセット(金属製)部品をつかむ
- (9) ラジオペンチ 抵抗・コンデンサのリード, 配線材などを曲げる
- (10) テスタ電圧,電流,抵抗,ショートなど計測
- (11) ワイヤストリッパ ワイヤ(配線材)の被服をむく
- (12) 精密ドライバねじを締める
- (13) 虫めがね,ルーペ部品の文字を見る

(2) 半田ごて台

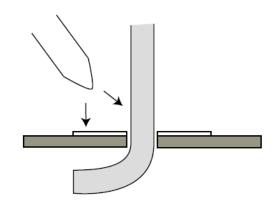
(3) 半田(鉛フリー) 0.6mm

(4) 半田吸い取り機

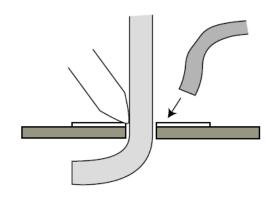
(6)ニッパ

(8)ピンセット

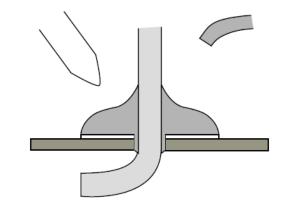
(9) ラジオペンチ


(10) テスタ

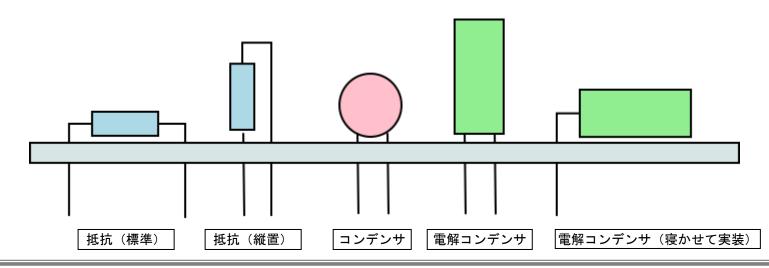
(11) ワイヤストリッパ


(12) 精密ドライバ

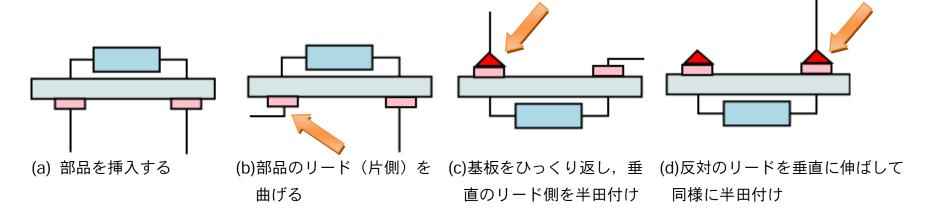
4.2. 半田付けのコツ


(1) 半田付けの手順

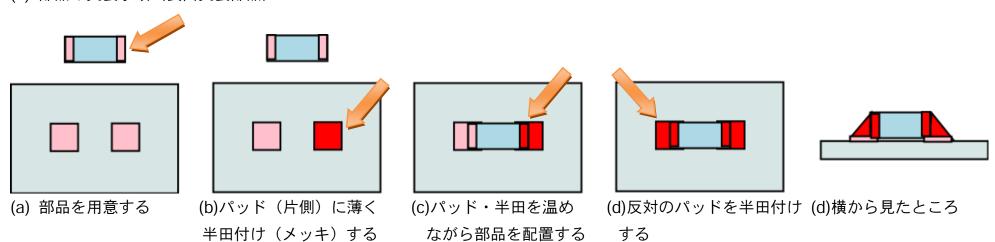
(a) 部品を挿入し半田ごてを近づける



(b)部品のリードとパッドを温め、 半田を近づける



(c)半田が溶けたら、半田を離し、続けて 半田ごてを離す


(2) 部品の実装方法

(3) 部品の実装手順(挿入部品)

(4) 部品の実装手順(表面実装部品)

5. 付録

(1) 抵抗値

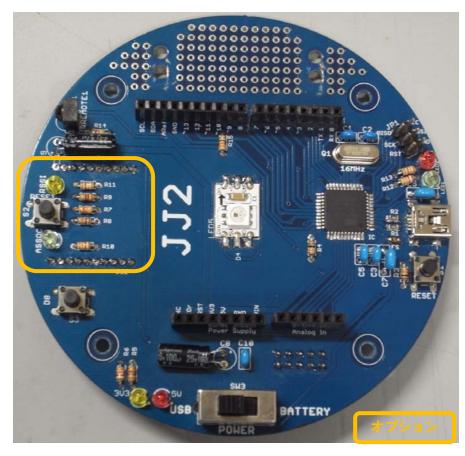
色	銀	金	黒	茶	赤	橙	黄	緑	青	紫	灰	白
数字	_	_	0	1	2	3	4	5	6	7	8	9
指数	10-2	10 ⁻¹	1	10	10 ²	10 ³	104	10 ⁵	106	10 ⁷	108	10 ⁹
誤差	±10	±5	±20	±1	±2	_	_	±0.5	±0.24	±0.1	±0.05	_

例)(帯1,2,3,4の順)茶,黒,橙,金

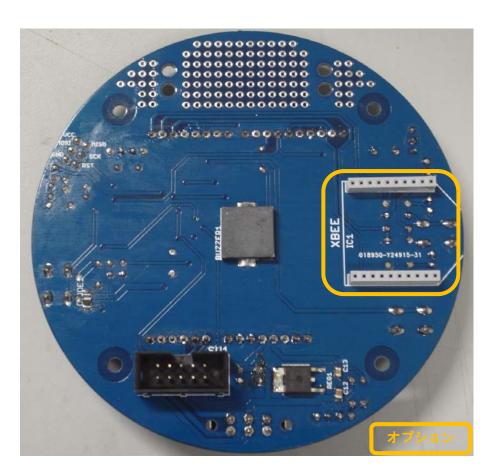
1 0 $\times 10^3 \Omega = 10 k\Omega (\pm 5\%)$

茶 黒 x 橙(指数)

(2) 略数字の例


表示	抵抗	コンデンサ	コイル
126	12 ΜΩ	12 μ F	_
125	1.2 MΩ	1.2 <i>μ</i> F	120 mH
124	120 kΩ	0.12 μ F	12 mH
123	12 kΩ	0.012 μ F	1.2 mH
122	1.2 kΩ	1200 pF	1200 μΗ
121	120 Ω	120 pF	120 μΗ
120	12 Ω	12 pF	12 μΗ

例) 104 (コンデンサ)


 $1.0 \times 10^4 \text{ pF} = 0.1 \mu \text{ F}$

単位: $M=10^6$, $k=10^3$, $m=10^{-3}$, $\mu=10^{-6}$, $n=10^{-9}$, $p=10^{-12}$

部品実装例

基板 (表)

基板(裏)

6. 改編履歴

日時	名前	内容
2014年1月17日(金)	辻 明典	新規作成
2014年1月19日(日)	辻 明典	1.0 版
2014年1月22日(水)	辻 明典	1.1 版(部品写真追加)
2014年6月28日(土)	辻 明典	1.2 版(JJ2 公開講座用更新)
2014年7月10日(木)	辻 明典	1.3 版(図・写真追加,軽微な修正)

ロボットのバージョン:

JJ1p1(2014年11月)プロトタイプ1(5台)

一動作確認

JJ1p2(2014年12月)プロトタイプ2(5台)

-DCDC コンバータ変更

JJ1 (2014年1月) 初期リリース (15台) マイコン勉強会にて配付

JJ2 (2014年6月) リリース (20台) 公開講座 (ロボットをつくろう) にて配付

- ーシルク印刷修正
- リセット回路(コンデンサなし,ダイオード追加)
- -電源配線の変更
- 電源コンデンサ追加
- -LED の抵抗値変更
- ースイッチ追加(D8)
- サーボモータ変更(調達先品切れ)

修正予定: RSSI,ASSOC, カソードインデクス, C6,DIODE シルク