

第2回力学系理論と制御理論の融合に関する合宿研究会

電気回路の状態方程式

一 系統的に求めるには 一

会場:晴海グランドホテル

川上 博

2011/05/13

あらすじ

- はじめに:簡単な回路例とKirchhoffの法則
 30分
- 2. 状態の拘束条件と接続の関係 30分
- 3. Proper treeのある回路の回路方程式 30分
- 4. Mixed potential による回路方程式の記述 30分

3. Proper treeのある回路の回路方程式

標準木に関するKCLとKVL

表 1 回路素子とその枝電圧、枝電流および個数

素子名	電圧	電流	個数
木枝独立電圧源 (V)	v_V	i_V	n_V
木枝キャパシタ <i>(C)</i>	v_C	i_C	n_C
木枝抵抗 <i>(G)</i>	v_G	i_G	n_G
補木枝抵抗 (R)	v_R	i_R	n_R
補木枝インダクタ <i>(L)</i>	$igg v_L$	i_L	n_L
補木枝独立電流源 (I)	v_I	i_I	n_I

$$Qi = [I \ F]i = 0$$

$$\begin{bmatrix} I & 0 & 0 & F_{VR} & F_{VL} & F_{VI} \\ 0 & I & 0 & F_{CR} & F_{CL} & F_{CI} \\ 0 & 0 & I & F_{GR} & F_{GL} & F_{GI} \end{bmatrix} \begin{bmatrix} i_V \\ i_C \\ i_G \\ i_R \\ i_L \\ i_I \end{bmatrix} = 0$$

$$i_V + F_{VR}i_R + F_{VL}i_L + F_{VI}i_I = 0$$
 電圧源の電流 $i_C + F_{CR}i_R + F_{CL}i_L + F_{CI}i_I = 0$ キャパシタの電流 $i_G + F_{GR}i_R + F_{GL}i_L + F_{GI}i_I = 0$ 木枝抵抗の電流

$$Bv = [-F^T \ I]v = 0$$

$$\begin{bmatrix} -F_{VR}^{T} & -F_{CR}^{T} & -F_{GR}^{T} & I & 0 & 0 \\ -F_{VL}^{T} & -F_{CL}^{T} & -F_{GL}^{T} & 0 & I & 0 \\ -F_{VI}^{T} & -F_{CI}^{T} & -F_{GI}^{T} & 0 & 0 & I \end{bmatrix} \begin{bmatrix} v_{V} \\ v_{C} \\ v_{G} \\ v_{R} \\ v_{L} \\ v_{I} \end{bmatrix} = 0$$

$$-F_{VR}^T v_V - F_{CR}^T v_C - F_{GR}^T v_G + v_R = 0$$
 補木枝の抵抗
$$-F_{VL}^T v_V - F_{CL}^T v_C - F_{GL}^T v_G + v_L = 0$$
 インダクタの電圧
$$-F_{VI}^T v_V - F_{CI}^T v_C - F_{GI}^T v_G + v_I = 0$$
 電流源の電圧

補木枝の抵抗 電流源の電圧

状態方程式, 出力方程式

出力方程式

$$i_{V} + F_{VR}i_{R} + F_{VL}i_{L} + F_{VI}i_{I} = 0$$
$$-F_{VI}^{T}v_{V} - F_{CI}^{T}v_{C} - F_{GI}^{T}v_{G} + v_{I} = 0$$

状態方程式

$$i_C + F_{CR}i_R + F_{CL}i_L + F_{CI}i_I = 0$$
$$-F_{VL}^T v_V - F_{CL}^T v_C - F_{GL}^T v_G + v_L = 0$$

$$i_{C} = C \frac{dv_{C}}{dt}$$

$$v_{L} = L \frac{di_{L}}{dt}$$

抵抗特性

$$i_G + F_{GR}i_R + F_{GL}i_L + F_{GI}i_I = 0$$
 $i_G = G_G v_G$
 $-F_{VR}^T v_V - F_{CR}^T v_C - F_{GR}^T v_G + v_R = 0$ $v_R = R_R i_R$

完全回路(complete circuit)

抵抗特性

$$i_G + F_{GR}i_R + F_{GL}i_L + F_{GI}i_I = 0$$
 $v_G = R_G i_G$
 $-F_{VR}^T v_V - F_{CR}^T v_C - F_{CR}^T v_G + v_R = 0$ $i_R = G_R v_R$

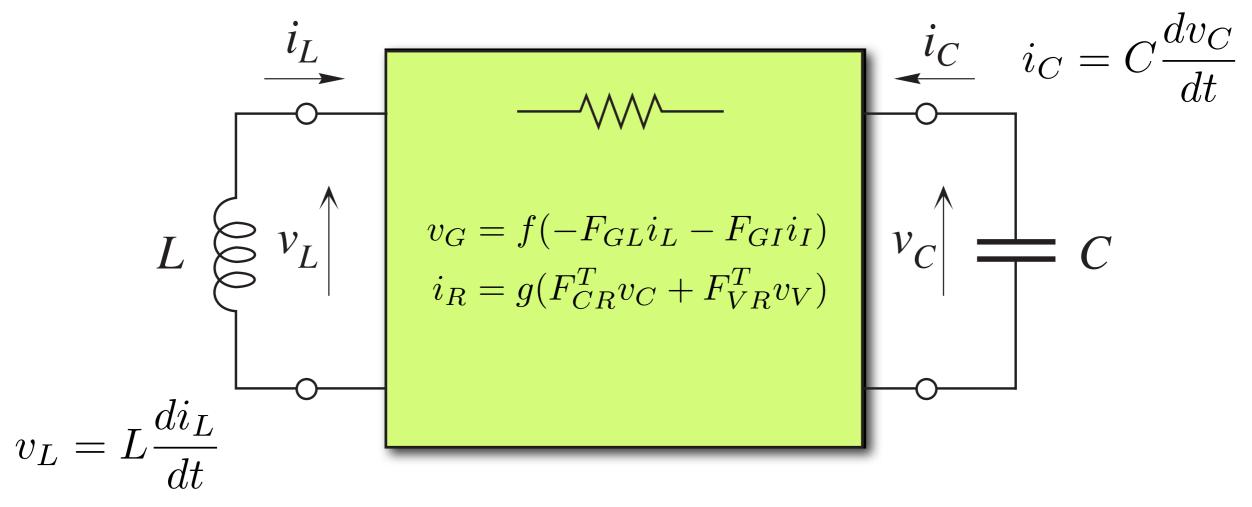
$$F_{GR}=0$$

$$i_G + F_{GL}i_L + F_{GI}i_I = 0$$
 $v_G = f(i_G)$
 $-F_{VR}^T v_V - F_{CR}^T v_C + v_R = 0$ $i_R = g(v_R)$

状態方程式

$$i_C + F_{CR}i_R + F_{CL}i_L + F_{CI}i_I = 0$$
$$-F_{VL}^T v_V - F_{CL}^T v_C - F_{GL}^T v_G + v_L = 0$$

$$i_G + F_{GL}i_L + F_{GI}i_I = 0$$
 $v_G = f(i_G)$
 $-F_{VR}^T v_V - F_{CR}^T v_C + v_R = 0$ $i_R = g(v_R)$



$$i_C + F_{CR}i_R + F_{CL}i_L + F_{CI}i_I = 0$$
$$-F_{VL}^T v_V - F_{CL}^T v_C - F_{GL}^T v_G + v_L = 0$$

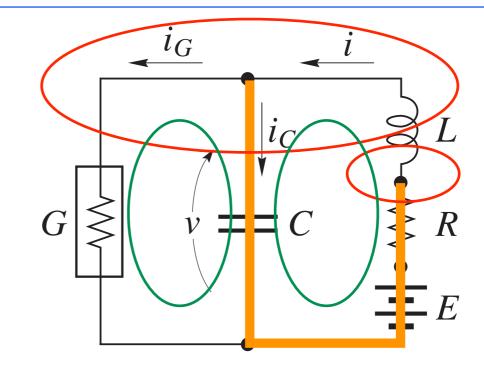
状態方程式の導出:手順

完全回路

C-標準木

抵抗部分回路

C, L 部分回路



$$C: i_C + i_G - i = 0$$

$$R: i_R - i = 0$$

$$v_R = Ri$$

$$G: -v + v_G = 0$$

$$i_G = g(v)$$

$$L: -E + v + v_R + v_L = 0$$

$$i_C = i - i_G = i - g(v)$$

 $v_L = -v_R - v + E = -Ri - v + E$

完全回路(complete circuit)

$$F_{GR}=0$$

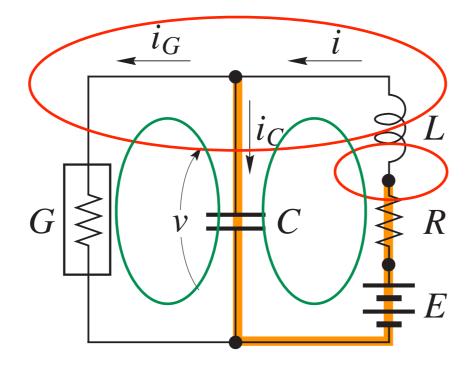
$$i_G + F_{GL}i_L + F_{GI}i_I = 0$$
 $v_G = f(i_G)$
 $-F_{VR}^T v_V - F_{CR}^T v_C + v_R = 0$ $i_R = g(v_R)$

$$F_{GR} = 0, \ F_{GI} = 0, \ F_{VR}^T = 0$$

$$i_G + F_{GL}i_L = 0 v_G = f(i_G)$$
$$v_R - F_{CR}^T v_C = 0 i_R = g(v_R)$$

状態方程式

$$i_C + F_{CR}i_R + F_{CL}i_L + F_{CI}i_I = 0$$
$$-F_{VL}^T v_V - F_{CL}^T v_C - F_{GL}^T v_G + v_L = 0$$



$$C: i_C + i_G - i = 0$$
 $R: i_R - i = 0$
 $G: -v + v_G = 0$
 $v_R = Ri$
 $i_G = g(v)$

$$L: -E + v + v_R + v_L = 0$$

$$i_C = i - i_G = i - g(v)$$

 $v_L = -v_R - v + E = -Ri - v + E$

$$\omega = v^T di = 0$$

$$\omega = v^{T} di = v_{V}^{T} di_{V} + v_{C}^{T} di_{C} + v_{G}^{T} di_{G} + v_{R}^{T} di_{R} + v_{L}^{T} di_{L} + v_{I}^{T} di_{I}$$

$$= (v_{L}^{T} di_{L} - i_{C}^{T} dv_{C}) + (v_{G}^{T} di_{G} - i_{R}^{T} dv_{R}) + d(v_{C}^{T} i_{C} + v_{R}^{T} i_{R} + v_{V}^{T} i_{V})$$

$$= (v_{L}^{T} di_{L} - i_{C}^{T} dv_{C}) + dP(i_{L}, v_{C}) = 0$$

$$P(i_L, v_C) = \int_0^{i_G} v_G^T di_G - \int_0^{v_R} i_R^T dv_R + v_C^T i_C + v_R^T i_R + v_V^T i_V$$

$$= -\int_{0}^{i_{L}} f(-F_{GL}i_{L})^{T} F_{GL}di_{L} - \int_{0}^{v_{C}} g(F_{CR}^{T}v_{C})^{T} F_{CR}^{T}dv_{C} - v_{C}^{T} F_{CL}i_{L} - v_{C}^{T} F_{CI}i_{I} - v_{C}^{T} F_{VL}i_{L}$$

$$v_{V}^{T} F_{VL}i_{L}$$

$$v_L + \frac{\partial P}{\partial i_L} = 0$$
$$-i_C + \frac{\partial P}{\partial v_C} = 0$$

$$L\frac{di_L}{dt} = -\frac{\partial P}{\partial i_L}$$

$$C\frac{dv_C}{dt} = \frac{\partial P}{\partial v_C}$$

$$P(i_L, v_C)$$

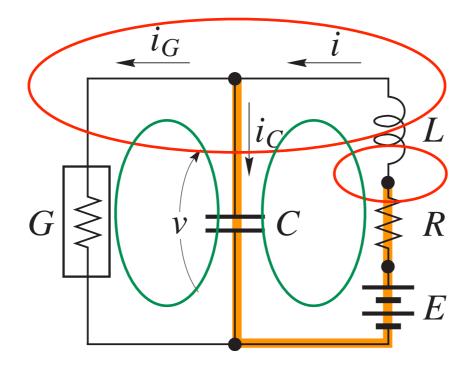
$$P(i_L, v_C) = -v_C^T F_{CL} i_L + F(i_L) - G(v_C)$$

$$F(i_L) = -\int_0^{i_L} f(-F_{GL}i_L)di_L - v_V^T F_{VL}i_L$$

$$G(v_C) = \int_0^{v_C} g(F_{CR}^T v_C) dv_C + v_C^T F_{CI} i_I$$

$$L\frac{di_L}{dt} = F_{CL}^T v_C - \left(\frac{\partial F}{\partial i_L}\right)^T$$

$$C\frac{dv_C}{dt} = -F_{CL}i_L - \left(\frac{\partial G}{\partial v_C}\right)^T$$



$$C: i_C + i_G - i = 0$$
 $R: i_R - i = 0$ $v_R = Ri$ $G: -v + v_G = 0$ $i_G = g(v)$ $L: -E + v + v_R + v_L = 0$

$$P(i, v) = -vF_{CL}i + F(i) - G(v) = vi + \frac{1}{2}Ri^2 - Ei - \int_0^v g(v)dv$$

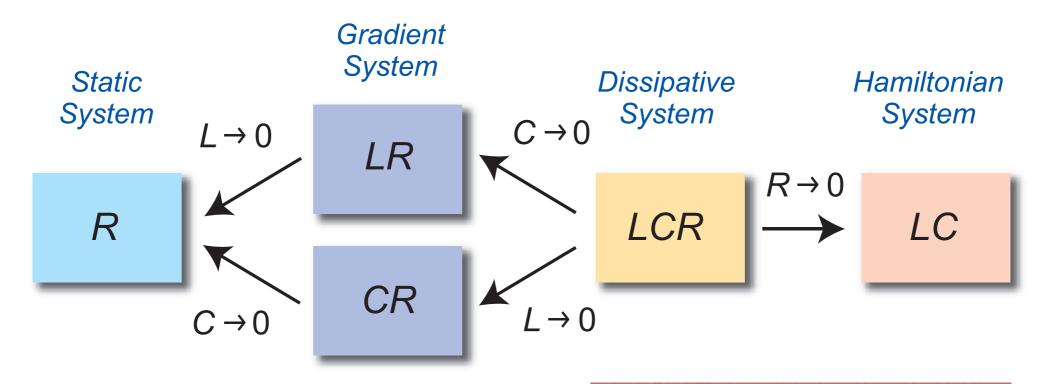
$$L\frac{di}{dt} = -\frac{\partial P}{\partial i} = -v - Ri + E$$

$$C\frac{dv}{dt} = \frac{\partial P}{\partial v} = i - g(v)$$

電気回路の力学系

$$L\frac{di_L}{dt} = F_{CL}^T v_C - \left(\frac{\partial F}{\partial i_L}\right)^T$$

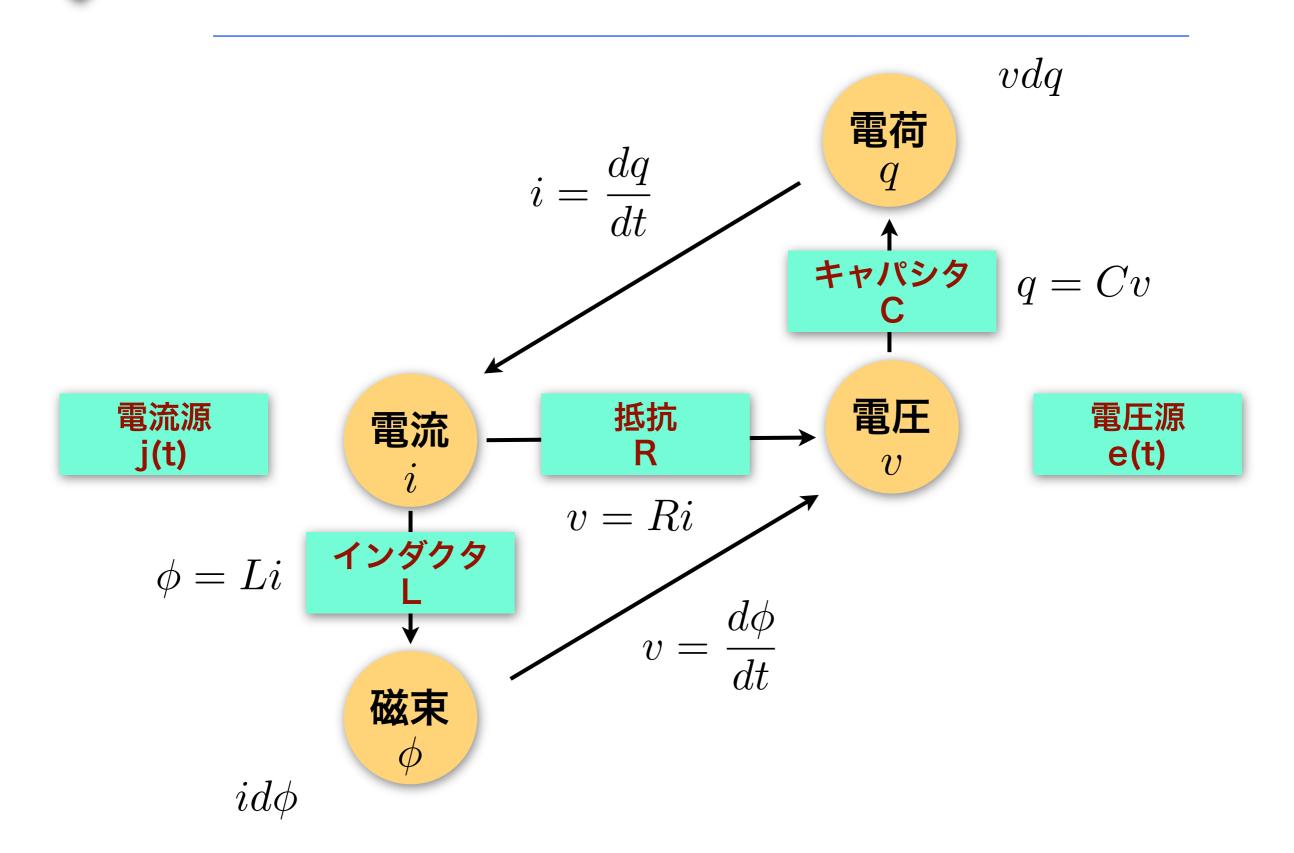
$$C\frac{dv_C}{dt} = -F_{CL}i_L - \left(\frac{\partial G}{\partial v_C}\right)^T$$



oscillator

attractor

3つの基本素子と4つの物理量



インダクタとキャパシタのエネルギー

インダクタ

$$i_L = f_L(\phi), \ v_L = \frac{d\phi}{dt}, \ W_L(\phi) = \int_0^{\phi} i_L^T d\phi = \int_0^{\phi} f_L(\phi)^T d\phi$$

キャパシタ

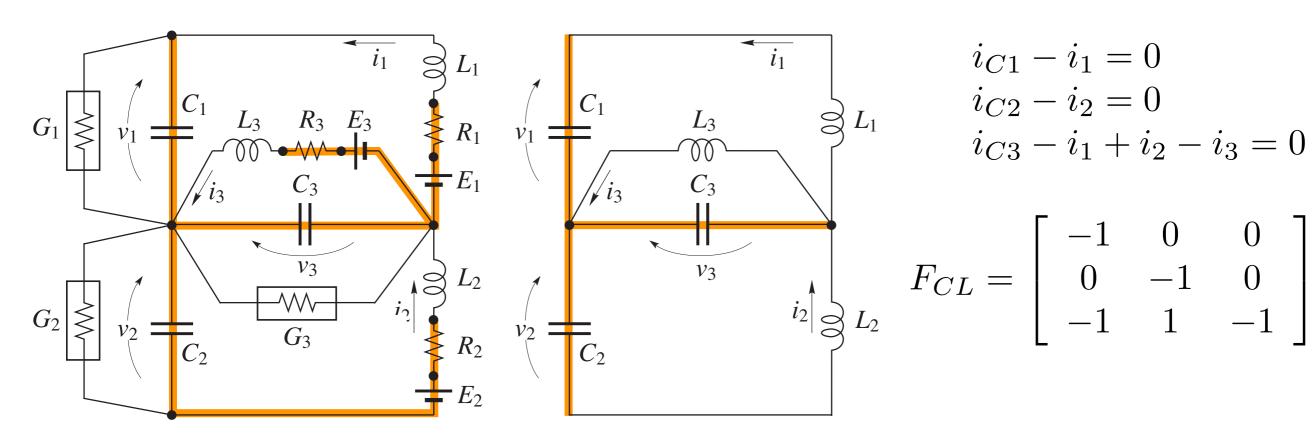
$$v_C = f_C(q), \ i_C = \frac{dq}{dt}, \ W_C(q) = \int_0^q v_C^T dq = \int_0^q f_C(q)^T dq$$

回路の全エネルギー
$$H(\phi, q) = W_L(\phi) + W_C(q)$$

回路方程式

$$\frac{d\phi}{dt} = F_{CL}^{T} \left(\frac{\partial H}{\partial q}\right)^{T}, \quad \frac{dq}{dt} = -F_{CL} \left(\frac{\partial H}{\partial \phi}\right)^{T}$$

A coupled BVP circuit



$$i_{C1} - i_1 = 0$$

 $i_{C2} - i_2 = 0$
 $i_{C3} - i_1 + i_2 - i_3 = 0$

$$F_{CL} = \left[egin{array}{cccc} -1 & 0 & 0 \ 0 & -1 & 0 \ -1 & 1 & -1 \ \end{array}
ight]$$

$$P(i, v) = -v^T F_{CL}i + F(i) - G(v) = vi + \frac{1}{2}Ri^2 - Ei - \int_0^v g(v)dv$$

$$P(i, v) = -v^T F_{CL}i + \sum_{k=1}^{3} \left[\frac{1}{2} R_k i_k^2 - E_k i_k - \int_0^{v_k} g(v_k) dv_k \right]$$

$$= v_1 i_1 + v_2 i_2 + v_3 (i_1 - i_2 + i_3) + \sum_{k=1}^{3} \left[\frac{1}{2} R_k i_k^2 - E_k i_k - \int_0^{v_k} g(v_k) dv_k \right]$$

A coupled BVP circuit

$$L_{1}\frac{di_{1}}{dt} = -\frac{\partial P}{\partial i_{1}} = -v_{1} - v_{3} - R_{1}i_{1} + E_{1}$$

$$L_{2}\frac{di_{2}}{dt} = -\frac{\partial P}{\partial i_{2}} = -v_{2} + v_{3} - R_{2}i_{2} + E_{2}$$

$$L_{3}\frac{di_{3}}{dt} = -\frac{\partial P}{\partial i_{3}} = -v_{3} - R_{3}i_{3} + E_{3}$$

$$C_1 \frac{dv_1}{dt} = \frac{\partial P}{\partial v_1} = i_1 - g(v_1)$$

$$C_2 \frac{dv_2}{dt} = \frac{\partial P}{\partial v_2} = i_2 - g(v_2)$$

$$C_3 \frac{dv_3}{dt} = \frac{\partial P}{\partial v_2} = i_1 - i_2 + i_3 - g(v_3)$$

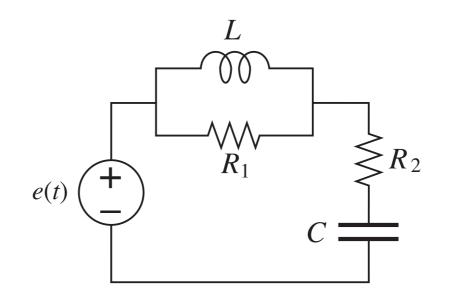
回路を変形する

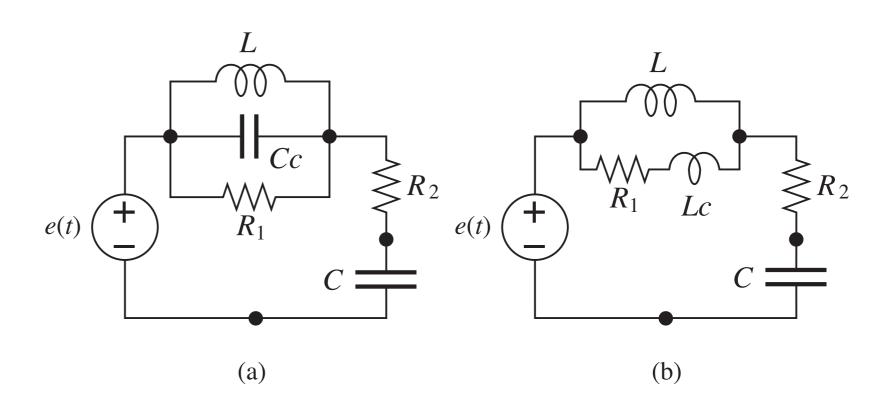
完全回路

C-標準木

抵抗部分回路

C, L 部分回路





C-基準木のある回路の場合

表1 回路素子とその枝電圧、枝電流および個数

	I		Ī
素子名	電圧	電流	個数
木枝独立電圧源 (V)	v_V	$v_V \mid i_V$	
木枝キャパシタ <i>(C)</i>	$oxed{v_C} oxed{i_C}$		n_C
木枝抵抗 (G)	$oxed{v_G} i_G$		n_G
木枝インダクタ <i>(</i> Γ)	v_{Γ}	i_{Γ}	n_{Γ}
補木枝キャパシタ <i>(S)</i>	v_S	i_S	n_S
補木枝抵抗 (R)	v_R	i_R	n_R
補木枝インダクタ <i>(L)</i>	$igg v_L$	i_L	n_L
補木枝独立電流源 (I)	v_I	i_I	n_I

$$Qi = 0; Bv = 0$$

 $(V): i_V + F_{VS}i_S + F_{VB}i_B + F_{VL}i_L + F_{VI}i_I = 0$

$$(C): i_{C} + F_{CS}i_{S} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$(G): i_{G} + F_{GS})_{S} + F_{GR}i_{R} + F_{GL}i_{L} + F_{GI}i_{I} = 0$$

$$(\Gamma): i_{\Gamma} + F_{\Gamma S}i_{S} + F_{\Gamma R}i_{R} + F_{\Gamma L}i_{L} + F_{\Gamma I}i_{I} = 0$$

$$i_{C} = C_{C}\dot{v}_{C}$$

$$i_{S} + F_{VS}i_{S} + F_{VR}i_{R} + F_{VL}i_{L} + F_{VI}i_{I} = 0$$

$$i_{C} + F_{CS}i_{S} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CS}i_{S} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{C} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{L} +$$

微分方程式の階数=#C1+#L1

表 1 CL 基準木の木枝・補木枝に属する各素子の数

素子	C 基準木			素子の総数	
	木	技	補木枝		
独立電圧源		n_V			n_V
キャパシタ	n_{C1}	n_{C2}		n_S	$n_C = n_{C1} + n_{C2} + n_S$
抵抗	n_{G1}	n_{G2}	n_{R1}	n_{R2}	$n_R = n_{G1} + n_{G2} + n_{R1} + n_{R2}$
インダクタ		n_{Γ}	n_{L1}	n_{L2}	$n_L = n_{\Gamma} + n_{L1} + n_{L2}$
独立電流源				n_I	n_I
	補木枝	木枝		補木枝	
	L 基準木				

強制退化

保存則

$$Qi = 0; Bv = 0$$

$$i_{C} = C_{C}\dot{v}_{C}$$

$$i_{S} = C_{S}\dot{v}_{S}$$

$$i_{C} + F_{VS}i_{S} + F_{VR}i_{R} + F_{VL}i_{L} + F_{VI}i_{I} = 0$$

$$i_{C} + F_{CS}i_{S} + F_{CR}i_{R} + F_{CL}i_{L} + F_{CI}i_{I} = 0$$

$$i_{G} + F_{GR}i_{R} + F_{GL}i_{L} + F_{GI}i_{I} = 0$$

$$i_{\Gamma} + F_{\Gamma L}i_{L} + F_{\Gamma I}i_{I} = 0$$

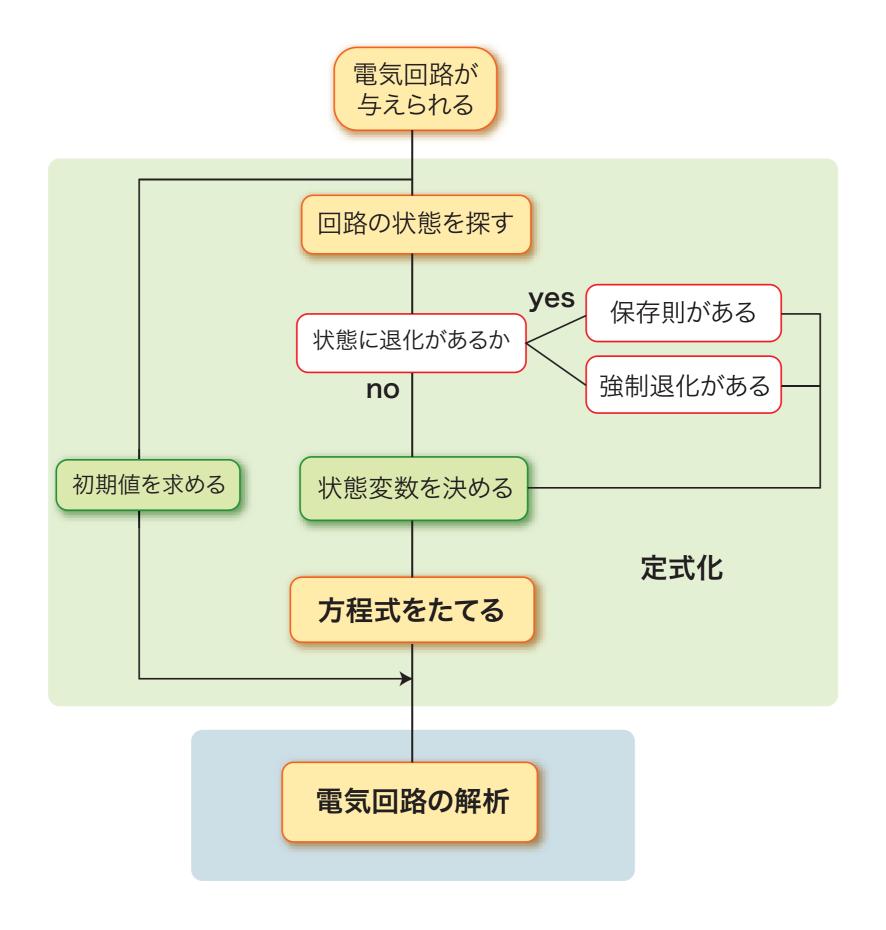
$$v_{S} - F_{VS}^{T}v_{V} - F_{CS}^{T}v_{C} = 0$$

$$v_{L} = L_{L}\dot{i}_{L}$$

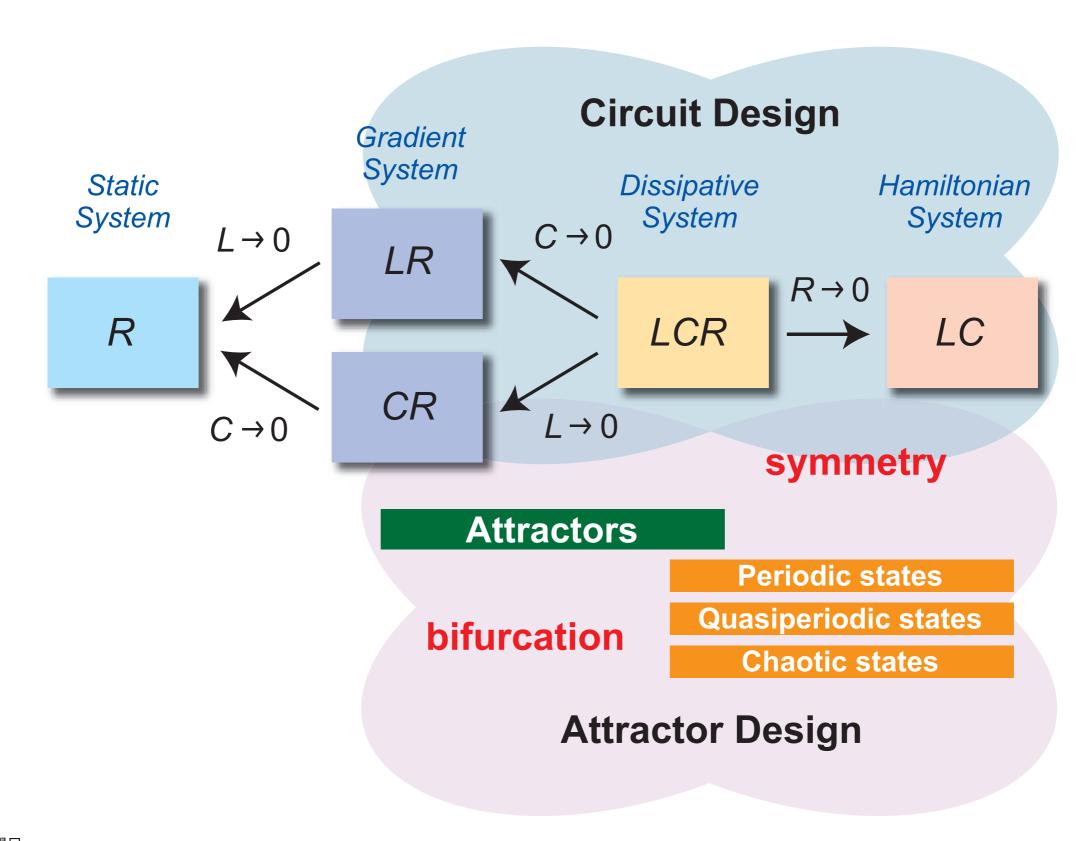
$$v_{\Gamma} = L_{\Gamma}\dot{i}_{\Gamma}$$

$$v_{L} - F_{VL}^{T}v_{V} - F_{CL}^{T}v_{C} - F_{GL}^{T}v_{G} - F_{\Gamma L}^{T}v_{\Gamma} = 0$$

$$v_{L} - F_{VL}^{T}v_{V} - F_{CL}^{T}v_{C} - F_{GL}^{T}v_{G} - F_{\Gamma L}^{T}v_{\Gamma} = 0$$

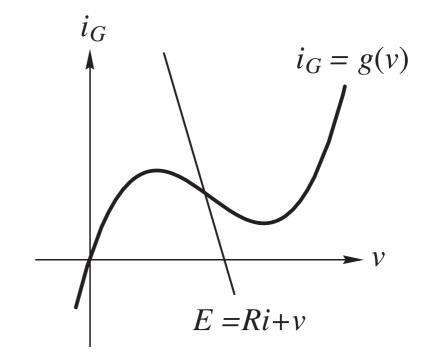


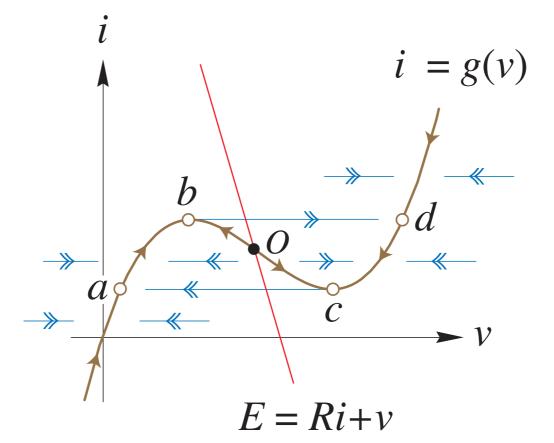
電気回路の非線形現象



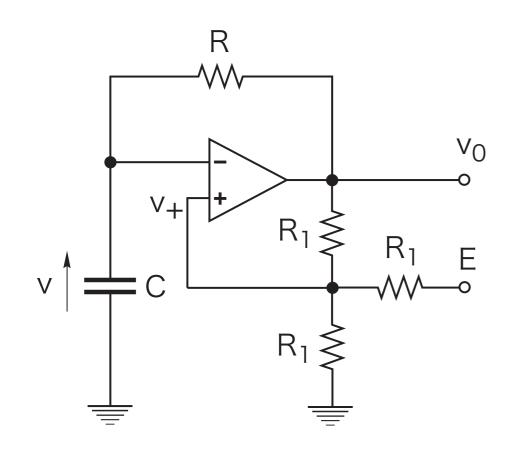
弛張振動(relaxation oscillation)

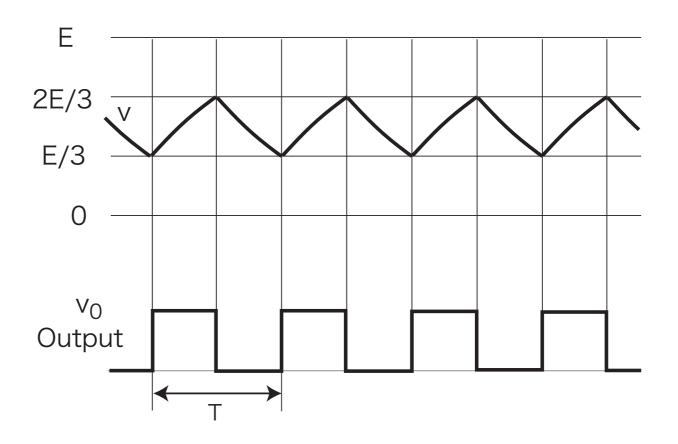




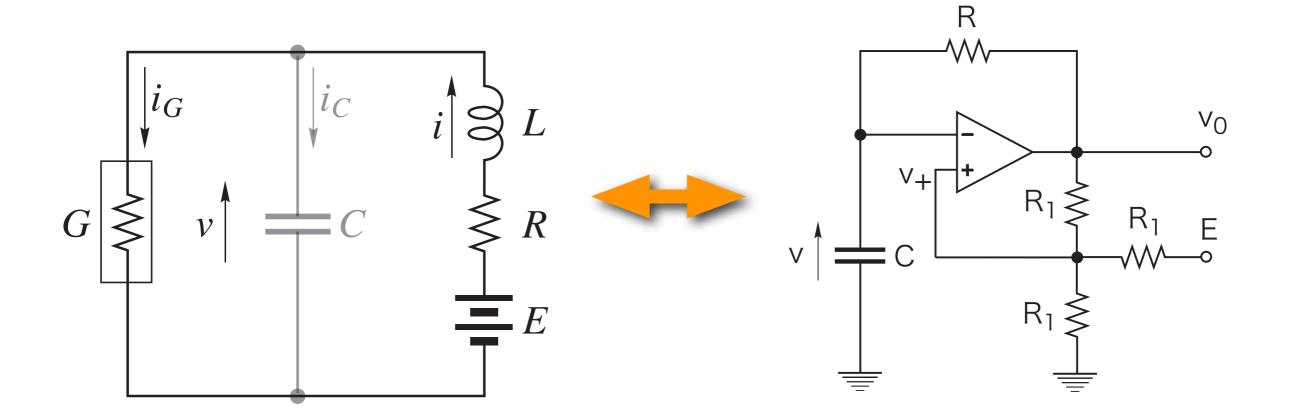


弛張振動(relaxation oscillation)

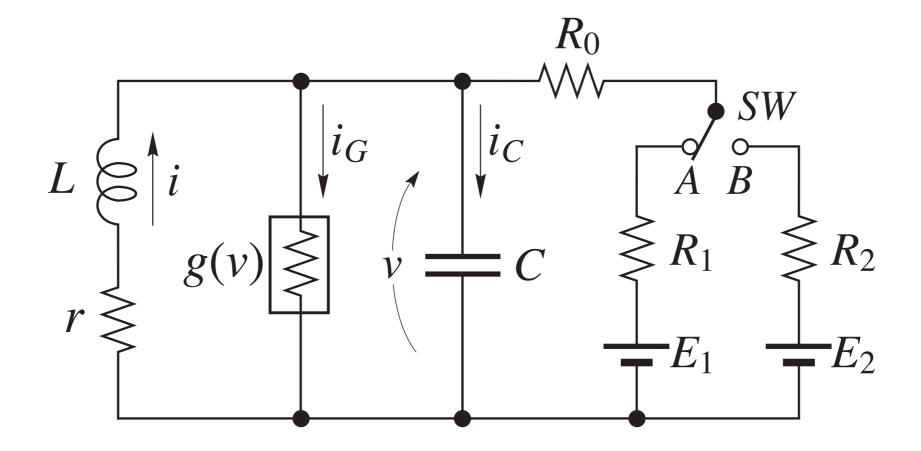




寄生素子の働きとスイッチの役割



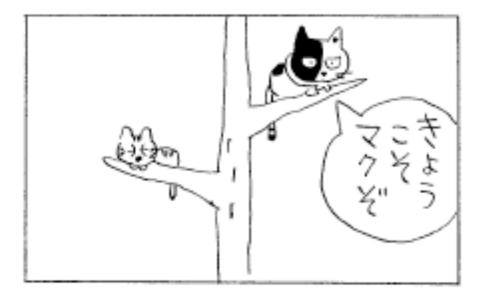
Alpazur oscillator

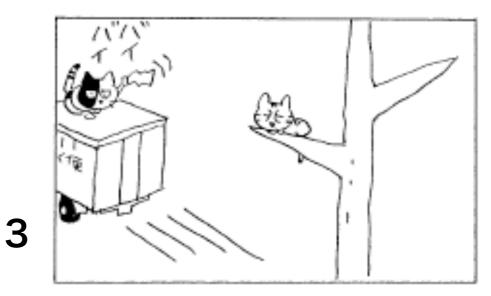


2

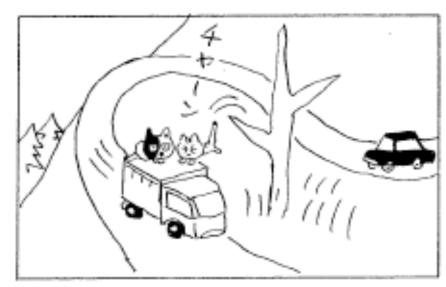
非線形: nonlinear

砂川しげひさ:ワガハイとチビ丸









recurrence

2012年6月14日木曜日 31

4