

上田研 ゼミ

Hybrid 回路の定性論(2)

川上 2014(H26).01.27

- 1. Hybrid回路の例
 - スイッチ、コンパレータ、論理素子を含むRLC回路
 これまでに研究した回路との関連性
- 2. Hybrid回路の数学モデル
 ◎ FSMとODE混合系の定式化法
- 3. Hybrid回路の解析法

◎ 貼合わされた(FSM)相空間の流れ(ODE)に関する幾何学

4. Hybrid回路の数値計算

◎ FSMと力学系を実現するdesign patternをつくる

今日の内容

- 3. Hybrid回路の定性的解析法
 - 1. 数学モデルの定式化
 - 2. 貼合せ多様体をつくる
 - 3. 貼合せ多様体上にPoincaré断面を定義する
 - 4. Poincaré断面上で運動の定性的解析

◎ 貼合わされた(FSM)相空間の流れ(ODE)に関する幾何学

ハイブリッド回路の回路方程式

Hybrid回路の数学モデル:ODE+FSM

		時間				
		連続	離散			
状態	連続	微分方程式 ODE	差分方程式 Poincaré map			
	離散	FSM in continuous time (Comparator)	Finite State Machine FSM			

ODE: ordinary differential equations: vector field FSM: finite state machine(有限状態機械)

説明に使うハイブリッド回路

1. 高坂系

- 1. 基本BC回路, border時変 (方形波, ノコギリ波)
- 2. 積分器を用いた基本BC回路

2. LEDホタル系

- 1. 方形波による強制系
- 2. 2個結合系

説明に使うハイブリッド回路

Kousaka's BC Circuit

RC circuit vs Integrator

線形RC回路

Forced KBC Circuit

PTの制御法は?

square wave, or LED output

LEDホタルの回路

(1) 回路 a1: v0=0[v] && 光あり:βon < βoff

(3) 回路 c1: 光あり:βon < βoff, αon < αoff

(2) 回路 b1: v0=Vcc[v] && 光あり:αoff < αon

(4) 回路 d1: 光あり:βoff < βon, αoff < αon

LEDホタルの回路

photo Tr	light on	light off	
v0 = 0	on	off	
v0 = E	off	off	

LEDホタルの回路:2個結合

mode	Osc	モード	出力電圧	LED	Photo Tr	Parameter	Dynamics
0	発振器 1	0	0	off	off	\beta_off	∨'1 = -∨1
	発振器2	0	0	off	off	\beta_off	v'2 = -v2
	発振器 1	1	Vcc	on	off	\beta_off	∨'1 = -∨1+1
	発振器2	0	0	off	on	\beta_on	v'2 = -v2
2	発振器 1	0	0	off	on	\beta_on	∨'1 = -∨1
	発振器2	1	Vcc	on	off	\beta_off	$v'^{2} = -v^{2}+1$
3	発振器 1	1	Vcc	on	off	\beta_off	∨'1 = -∨1+1
	発振器2	1	Vcc	on	off	\beta_off	v'2 = -v2+1

Hybrid回路の定性的解析法

- 1. 数学モデルの定式化
- 2. 貼合せ多様体をつくる
- 3. 貼合せ多様体上にPoincaré断面を定義する
- 4. Poincaré断面上で運動の定性的解析

Kousaka's BC circuit

1. digital part -> modes

Q=0(mode0) Q=1(mode1)

2. analog part -> ode mode0 : dx/dt+x = 0 mode1 : dx/dt+x = 1

3. ADC part border: phase event transition rule

Arrival set and Departure set

hybrid dynamics

X₂

貼合せ多様体(collaged mfd)

最も単純なflowを仮定して描いたcollaged mfd

大域安定性(Confinor)

系の運動は最終的にはblueの領域に吸い込まれる

Poincaré section

departure set の適当な集合を選ぶ D00 U D 0 -> D 0Poincaré map を定義する I) $PI: DIO \longrightarrow AIO \longrightarrow DIO$ 2) P2: D10 -> A11 -> D01 -> A00 -> D10 3) P3: D00 —> A01 U A00

ここからは通常の解析をどうぞ

Xn+l

0.9

0.3

0.2

0.2

0.3

0.4

[4] N.N. Leonov; Map of the line onto itself, Radiofisica, 2(6), 1959, pp. 942-056
 N.N. Leonov; Piecewise linear map, Radiofisica, 3(3), 1960, pp. 496-510
 N.N. Leonov; Theory of discontinuous maps of the line, Radiofisica, 3(5), 1960, pp. 872-886
 N.N. Leonov; Discontinuous map of the straight line, Dokl. Akad. Nauk. SSSR, 143(5) 1962, pp. 1038-1041

0.5

0.6

0.7

0.8

Xn

0.9

alpha=0.85 T=0.66

Forced KBC Circuit

方形波入力でvrが変わる回路

t=0

t=T

A₃₁

 A_{30}

e₁₃(Phase)

A

A₁₀

t=T

e₀₃(Timer)

e₂₁(Timer)

modeの 簡略化

M. di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems, Springer Applied Mathematical Sciences 163, 2008; see Chap. 4

time variant border

circuit with moving border

回路としてどんなmeritがあるのだろう?

LEDホタルの強制振動

LED FF with SW forcing term

nhote	Tr	comparator : p		
	5 11	on:1	off:0	
$\#\lambda$ \neg · α	on:1	off:0	on:1	
. q	off:0	off:0	off:0	

mode0 : (q, p) = (0, 0), dx/dt+x = 0mode1 : $(q, p) = (1, 0), dx/dt+x = 0, \beta_on$ mode2 : (q, p) = (0, 1), dx/dt+x = 1mode3 : (q, p) = (1, 1), dx/dt+x = 1

mode and phase diagrams

Poncare section D₀₀ U D₂₀ U D₂₁

各モードのflowの様子

Example of Poincaré map

waveform for T=2.7

mapping trajectories for T=2.7

2つのLEDホタルの同期

回路例5:OCO type A [4:1]

LED firefly oscillators

RC Square Wave Oscillator

Triangular Wave Oscillator

mode0 : (q, p) = (0, 0), dx/dt+x = 0, dy/dt+y=0mode1 : $(q, p) = (1, 0), dx/dt+x = 1, dy/dt+y=0, beta2_on$ mode2 : $(q, p) = (0, 1), dx/dt+x = 0, dy/dt+y=1, beta1_on$ mode3 : (q, p) = (1, 1), dx/dt+x = 1, dy/dt+y=1

area preserving map

Poincaré section and mapping

Poincaré断面は同期領域に沈み込む

Poincaré断面は同期領域に沈み込む

ハイブリッド回路の定性的解析法

1. 数学モデルの定式化

- a) digital part: mode数の決定, mode遷移の導出
- b) analog part: vector field, 回路方程式の導出
- c) ADC part: mode数の決定, mode遷移の導出
 - c-1) border mfd, phase event, flowの定義域
 c-2) flowの到着集合,出発集合を求めmode遷移を再確認
 c-3) timer eventを求めmode遷移を再確認
- 2. 貼合せ多様体をつくる

Poincaré断面を定義し、Poincaré写像をつくる

3. 運動の解析

各種不変集合を求め、安定性や分岐を考察する

References

- 高坂、上田、田原、川上、安部:Border-Collision分岐を呈する 簡素な回路の実現と解析、電気学会論文誌 C, 平成14年11月号、 pp.1908-1916.
- [2] T. Kousaka, T. Ueta and H. Kawakami, Bifurcation of Swotched Nonlinear Dynamical Systems, IEEE Trans. on Circuit and Systems II, Vol. 46, No. 7, July 1999, pp. 878-885.
- [3] 高坂拓司:断続動作特性を有する非線形力学系の分岐解析

[4]

References

[1] N.N. Leonov; Map of the line onto itself, Radiofisica, 2(6), 1959, pp. 942-956.

[2] N.N. Leonov; Piecewise linear map, Radiofisica, 3(3), 1960, pp. 496-510.

[3] N.N. Leonov; Theory of discontinuous maps of the line,

Radiofisica, 3(5), 1960, pp. 872-886.

[4] N.N. Leonov; Discontinuous map of the straight line, Dokl. Akad. Nauk. SSSR, 143(5) 1962, pp. 1038-1041.

DORINGRAD. FRAUK. 5551(, FF5(5), F702, pp. 1050-1011.

[1] Н. Н. Леонов; О точечном переобразовании прямой в прямую, Радиофизика, Том. 2, *No.* 6, 1959, pp.942-956.

[2] Н. Н. Леонов; О разрыбном кусочно-линейном точечном переобразовании прямой в прямую, Радиофизика, Том. 3, *No.* 3, 1960, pp.496-510.

[3] Н. Н. Леонов; К теории разрыбного переобразования прямой в прямую, Радиофизика, Том. 3, *No.* 5, 1960, pp.872-886.

[4] Н. Н. Леонов; О разрывном точечном переобразовании прямой в прямую, ДАН. СССР, 1962, Том. 143, *No.* 5, pp.1038-1041.