
1

View で描くグラフィックのアニメ化

ー 初期値を変えてphase portaitを描く ー

H. Kawakami

April, 2010(H22)

2

The main event loop

Note: Applications normally receive events from the keyboard and mouse only when they are in the
foreground (that is, active). Although applications running in the background do not normally receive key
and mouse events, low-level mechanisms called event taps make it possible for a background application
to receive events and act upon them.

Before it dispatches an event to an application, the window server processes it in various ways; it time-stamps
it, annotates it with the associated window and process port, and possibly performs other tasks as well. As
an example, consider what happens when a user presses a key. The device driver translates the raw scan
code into a virtual key code which it then passes off (along with other information about the keypress) to
the window server in an event record. The window server has a translation facility that converts the virtual
key code into a Unicode character.

In Mac OS X, events are delivered as an asynchronous stream. This event stream proceeds “upward” (in an
architectural sense) through the various levels of the system—the hardware to the window server to the
Event Manager—until each event reaches its final destination: an application. As it passes through each
subsystem, an event may change structure but it still identifies a specific user action.

Note: Lower levels of the system trap and handle some events early in the event stream. These events are
never routed to a Cocoa application. These events are generated by reserved keys or key combinations, such
as the power and media-eject keys.

Every application has a mechanism specific to its environment for receiving events from the window server.
For a Cocoa application, that mechanism is called the main event loop. A run loop, which in Cocoa is an
NSRunLoop object, enables a process to receive input from various sources. By default, every thread in Mac
OS X has its own run loop, and the run loop of the main thread of a Cocoa application is called the main
event loop. What especially distinguishes the main event loop is an input source called the event source,
which is constructedwhen the global NSApplication object (NSApp) is initialized. The event source consists
of a port for receiving events from the window server and a FIFO queue—the event queue—for holding
those events until the application can process them, as shown in Figure 1-2.

Figure 1-2 The main event loop, with event source

Main run loop

Event source

event
Window server

event

Mach port
event
event
event

A Cocoa application is event driven: It fetches an event from the queue, dispatches it to an appropriate object,
and, after the event is handled, fetches the next event. With some exceptions (such as modal event loops)
an application continues in this pattern until the user quits it. The following section, “Event Dispatch,” describes
how an application fetches and dispatches events.

14 How an Event Enters a Cocoa Application
2009-10-07 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

NSApplication

NSView

NSWindow

NSEvent

- (void)mouseDown:(NSEvent *)theEvent
- (void)mouseUp:(NSEvent *)theEvent
- (void)mouseDragged:(NSEvent *)theEvent

http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/EventOverview/

http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/EventOverview/

3

アプリケーション•カルテットのクラス階層

NSObject

NSResponder

NSViewNSWindow NSApplication

NSResponderを継承したすべて
のクラスがイベント処理可能

カスタムオブジェクト
に機能をdelegateし
イベント処理可能

マウスイベント
キーボードイベント

4

今日のプログラム： mouse event の処理
- (void)mouseDown:(NSEvent *)theEvent
- (void)mouseUp:(NSEvent *)theEvent
- (void)mouseDragged:(NSEvent *)theEvent

- (void) mouseDown:(NSEvent *)theEvent{
 NSPoint temp;
 NSPoint loc=[theEvent locationInWindow];

 loc.x -= [self frame].origin.x;
 loc.y -= [self frame].origin.y;

 x[0]=loc.x/alpha[0] + xm[0];
 x[1]=loc.y/alpha[1] + ym[0];

 temp=[self convertPoint:loc toView:nil];
 [[NSColor redColor] set];
 [[NSBezierPath bezierPathWithOvalInRect:NSMakeRect(temp.x-4, temp.y-4, 8, 8)] fill];
}

