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Abstract— Tinnitus is a symptom of perceiving phantom
sounds. As one of its treatment techniques, tinnitus retraining
therapy (TRT) has been proposed. It consists of psychotherapy
by counseling and physical therapy based on masking theory
by external stimuli. Our interest is to explain medical effects of
the physical therapy from the viewpoint of engineering. In this
paper we proposed a neural oscillator model with plasticity as a
model for the tinnitus generation in the auditory central nervous
system and its treatment. We investigated not only oscillatory
phenomena observed in the model but also inhibition of the
oscillation by external stimulus.

I. INTRODUCTION

Tinnitus is a symptom of perceiving phantom sounds. The
majority of tinnitus cases are caused by misinterpreting null
sounds from ears as significant nervous signals in the cerebral
limbic system. As a medical treatment for tinnitus, tinnitus
retraining therapy (TRT) has been proposed[1], which is
based on habituation of the central nervous system. Although
it consists of psychotherapy by counseling and physical
therapy with external acoustic stimuli, we focus only the
physical therapy. In the physical therapy, the cerebral limbic
system of a patient is trained with adjusted external sounds
so that tinnitus disappers. After that, retrained cerebral limbic
system does not perceive tinnitus for a certain period.

In this paper, in order to account for medical effects
of the physical therapy in TRT from the viewpoint of
engineering, we propose a neural oscillator model with
plasticity which has been frequently employed in models of
neural systems[2], [3]. To elucidate dynamical properties of
the model, we describe a method of analysis[4] based on
qualitative dynamical theory, then we investigate bifurcation
of oscillation observed in the model. By computing the
bifurcations using the method, we can clarify the system
parameters contributed to generation of the oscillation and
the parameter region in which stable oscillation exists. It is
also described that we can inhibit the oscillation by external
stimulus and its effective range in the parameters of the
stimulus.

II. MODEL DESCRIPTION

We illustrate the architecture of a neural oscillator model
in Fig. 1. The model consists of two excitatory neurons,
E1 and E2, and one inhibitory neuron I . The E1 and E2
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bidirectionally connect with positive couplings illustrated by
white small circles; the E2 and I also connect with a positive
coupling and a negative coupling each other illustrated by
the black circle; the S represents external stimulus to the
excitatory neuron E1. This architecture has been employed
frequently in modeling neural systems[2], [3]. Its dynamics
is described by

dx1

dt
= (−x1 + C12Z2 + S) /τ1 (1)

dx2

dt
= (−x2 + C21Z1 − C2IZi) /τ2 (2)

dxI

dt
= (−xI + CI2Z2) /τI (3)

Zj =
2
π

tan−1 xj , (4)

where xj , Zj , and τj (j = 1, 2, I) are the state, the output,
and the time constant in each neuron, respectively. The Cjk

(k = 1, 2, I) denotes the coupling coefficients from the k-
neuron to the j-neuron, which are positive value. Note that
only the sign of C2I is negative in (2).
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Fig. 1. The architecture of a neural oscillator model is illustrated, which
consists of two excitatory neurons, E1 and E2, and one inhibitory neuron
I . The external stimulation S is added to only the excitatory neuron E1.
The two neurons (E1, E2) or (E2, I) are coupled each other.

III. COMPUTATIONAL METHOD

Oscillations are observed under certain parameter region.
By computing bifurcation sets of oscillations, we can in-
vestigate the parameter region. The computational method
is based on qualitative dynamical theory[4], then we should
describe the method before analyzing the model.

Let us consider a general N -dimensional autonomous
system which consists of (1)–(4) such that

dx

dt
= f(x), (5)

where the state vector x ∈ RN corresponds to x1, x2, and
xI in the case of the model. We assume that f(x) is C∞-
class function for all arguments and there exists a solution



with initial condition, x = x0 at t = t0, which is described
by x(t) = ϕ(t;x0) for all t. We also assume that one of the
solutions is a limit cycle and its trajectory always intersects
with a section in the state space, illustrated in Fig. 2. Thus,
arranging a subspace Π ⊂ RN−1 called Poincaré section, we
can define Poincaré map T as

T : Π → Π; xk �→ xk+1 = ϕ(τ ;xk). (6)

The τ is the time in which the trajectory emanating from a
point in Π at t = t0 will across the Π again. A one-periodic
solution in (5) corresponds to a fixed point of T . Hence, an
issue for bifurcations of one-periodic solutions returns to an
issue for bifurcations of a fixed point of T .

Let x∗ ∈ Π be a fixed point of T such that

x∗ − T (x∗) = 0. (7)

Then its characteristic equation is defined by

χ(µ) = det
(

µIN−1 − ∂T (x∗)
∂x

)
= 0, (8)

where IN−1 is the (N − 1) × (N − 1) identity matrix.
Bifurcation of a fixed point occurs when its topological
property is changed by variation of a system parameter, i.e.,
the characteristic multiplier µ is only on the unit circum-
ference of Gaussian plane. Its types are classified into tan-
gent bifurcation, period-doubling bifurcation, and Neimark-
Sacker bifurcation. Then the three bifurcations occur under
µ = 1, µ = −1, and |µ| = 1, respectively. Therefore, we
can compute bifurcation sets of a fixed point by solving the
simultaneous equation composed of (7) and (8).
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Fig. 2. Poincaré section Π ⊂ RN−1 is a subspace of RN . Poincaré
section is arranged so that solutions of f(x) across the section.

IV. RESULTS AND DISCUSSIONS

A. Autonomous properties of neural oscillator

In this paper we fixed the parameters:

τ1 = 10, τ2 = 10, τI = 20
C21 = 10, CI2 = 20.

We observed a stationary oscillation under C12=10.0 and
C2I=10.0, and its initial state is x=(0.1, 0.0, 0.0). The
waveforms of the oscillation are shown in Fig. 3. We also

observed a stationary equilibrium under the same parameters,
but its initial state is x=(0.0, 0.0, 0.0). This equilibrium is in
the origin, see Fig. 4. Hence, the stable oscillation and the
stable equilibrium coexist under the same parameters.

In order to investigate the existing region of the oscillation
in the C12–C2I plane, we computed the bifurcation sets of
the oscillation. The bifurcation diagram is illustrated in Fig.
5. The curves indexed by Go denotes the tangent bifurcation
of the oscillation, then the oscillation exists in only the region
surrounded by the two curves. Besides, the equilibrium exists
in all region of the same figure. That is, one stable oscillation
and one stable equilibrium coexist in the region surrounded
by Go, then the oscillation observed in such bistable state is
called stiff oscillation.
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Fig. 3. The oscillation can be observed under C12=10.0 and C2I=10.0.
Its initial state is x=(0.1, 0.0, 0.0).
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Fig. 4. The equilibrium can be observed under C12=10.0 and C2I=10.0.
Its initial state is x=(0.0, 0.0, 0.0).

B. Properties of plastic neural oscillator

Let us consider a plastic neural model, e.g., the coupling
C12 has plasticity defined by

dC12

dt
= (−C12 + bZ1Z2 + C0) /τc, (9)

where b is the coupling parameter of E1 and E2, then C0

is the bias of C12. Hence, the dynamical system of the
plastic neural oscillator model is described by (1)–(4) and
(9). Because we found the lower limit value of C2I , that
is the line indexed by Lo, in Fig. 5 that the oscillation can
be observed, we fixed the parameter as C2I=10. Note that
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Fig. 5. This is bifurcation diagram of the oscillation shown in Fig. 3 on
C12–C2I plane. The curves indexed by Go indicate tangent bifurcation of
the oscillation.

its lower limit of C12 is given by the nodical coordinate
between the upper curve of G0 and the line with C2I=10,
that is C12=6.618. We also fixed the other parameters as b=20
and τc=500. Figure 6 shows the stationary values of C12 by
changing the value of C0. The lower line indicates that the
stationary state converges to the stable equilibrium, then the
upper curve denotes that it converges to the stable oscillation.
Then the oscillation and the equilibrium coexist in the range
of C0=[2.65, 8.06], which is interleaved by the two dotted
lines. From an engineering viewpoint we are interested in
the region of system parameters that the stiff oscillation is
observed and whether the oscillation can be inhibited by an
external stimulus.
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Fig. 6. This shows the stationary value of C12 with any initial value for
each C0. The parameters are fixed as C2I=10, b=20, and τc=500. The upper
curve and the lower line denote existence of equilibrium and oscillation,
respectively.

C. Inhibition of oscillation

We fixed the parameter as C0=5 so that the stiff oscillation
appears, see Fig. 6. Let us consider inhibition of the oscilla-

tion by external stimuli: the sinusoidal stimulus defined by

S = Ve sin 2πfet (10)

and DC stimulus described by

S = Vd. (11)

By applying the sinusoidal stimulus to E1, the stationary
value of the plastic coupling C12 changes. We show the
phenomenon under Ve=2 in Fig. 7. The dotted line indicates
the threshold whether stable oscillation occurs or the oscil-
lation is inhibited; its value of C12 is 6.618 as mentioned
above. The stationary value of C12 with the initial state
C12(0)=11.8 is under the threshold line in the range of
fe=(0.0, 0.011], then it is above the line otherwise. The
initial state C12(0)=11.8 means the parameter value when
the stationary oscillation appears. Hence, we can inhibit the
oscillation by adding such sinusoidal stimulus with Ve=2 and
fe=(0.0, 0.011]. Then we investigated the parameter region in
fe–Ve plane that we can inhibit the oscillation; and its region
is shown in Fig. 8. If we fixed the two parameters Ve and fe

in the black region, the oscillation can be inhibited. We are
interested in the followings: we can inhibit the oscillation
only around Ve=2, which is smaller than the amplitude of
x1; and we can also inhibit the oscillation only if fe is
similar in the frequency of x1. We showed simulation results
for two sinusoidal stimuli with different frequency in Figs.
9 and 10. By applying a sinusoidal stimulus with similar
frequency to x1, the value of C12 slowly decreases under
the threshold line of occurrence of oscillation. After that
the oscillation disappears without the stimulus. Withal, the
sinusoidal stimulus with high frequency cannot reduce the
value of C12, then the oscillation goes on.

We also investigated inhibition of the oscillation for DC
stimulus. As shown in Fig. 11 we can inhibit the oscillation
by DC stimulus, however, its parameter region of Vd is
restricted in around [1.2, 1.6].
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Fig. 7. The figure is one-parameter bifurcation diagram of C12 for fe under
Ve=2. It indicates stationary value of C12 under each fe. Its initial value
is fixed as C12(0)=11.8. The dotted line indicates the threshold whether
stable oscillation occurs or the oscillation is inhibited.
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Fig. 8. This is the basin of the stable equilibrium under external periodic
stimulus described by (10). That is, we can inhibit the stable oscillation in
the black region of fe–Ve plane.
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Fig. 9. These waveforms are simulation results by adding the sinusoidal
stimulus: S = 2 sin 0.02πt. The external stimulus is applied in only from
500 to 2500 sec.

V. CONCLUDING REMARKS

To account for medical effect of TRT from the viewpoint
of engineering, we proposed a neural oscillator model with
plasticity. We investigated the autonomous properties of the
neural oscillator model, then it was discovered that stiff
oscillation appears in a certain parameter region. We also
considered inhibition of the oscillation in bistable state using
two kinds of external stimuli: sinusoidal stimulus and DC
stimulus. It consequently was found out that we can inhibit
the oscillation only under certain range of amplitude and
frequency. If it assumed that the oscillation and the equilib-
rium respectively correspond to occurrence of tinnitus and
disappearance of tinnitus, we can explain the fundamental
mechanism of generation of tinnitus and treatment of tinnitus
by external stimulus.

In our future works, to clarify the mechanism of inhibition
of the oscillation in the model, we should investigate bifurca-

0 1000 2000 3000
−10

0
10

0 1000 2000 3000
−10

0
10

0 1000 2000 3000
−10

0
10

0 1000 2000 3000
5

10
15

0 1000 2000 3000
−4
0
4

x 1
x 2

x I
C

 1
2

Time [sec]

S

Fig. 10. These waveforms are simulation results by adding the sinusoidal
stimulus: S = 2 sin 0.03πt. The external stimulus is applied in only from
500 to 2500 sec.

−4 −3 −2 −1 0 1 2 3 4
5

6

7

8

9

10

11

12

13

Vd

C
 1

2

Stable
 equilibrium

Stable
 oscillation

Fig. 11. The figure is one-parameter bifurcation diagram of C12 for the DC
stimulus described by (11). It denotes stationary value of C12 under each
Vd, and its initial value is fixed as C12(0)=11.8. The dotted line indicates
the threshold whether stable oscillation appears; the value of C12 is 6.618.

tion phenomena of the oscillation observed in the dynamical
system with some kinds of external stimuli.
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