
  

  

Abstract—Tinnitus is the perception of phantom sounds 
in the ears or in the head. Sound therapy techniques for 
tinnitus treatment have been proposed. In order to 
investigate mechanisms of tinnitus generation and the 
clinical effects of sound therapy from the viewpoint of 
neural engineering, we have proposed a computational 
model using a neural oscillator. In the present paper, we 
propose another model that is composed of model 
neurons described by simplified Hodgkin-Huxley 
equations. By computer simulation it was detected that 
this model also has a bistable state, i.e., a stable oscillatory 
state and a stable equilibrium (non-oscillatory) state 
coexist at a certain parameter region. It was also noticed 
that the oscillation can be inhibited by supplying constant 
or pulse train stimuli, which is hypothesized as an 
afferent signal that is employed as an acoustical signal for 
tinnitus treatment. By hypothesizing that the oscillation 
and the equilibrium correspond to generation and 
inhibition of tinnitus, respectively, these phenomena 
could explain the fact that the habituated human auditory 
system temporarily halts perception of tinnitus following 
sound therapy.  

I. INTRODUCTION 
INNITUS is the perception of phantom sounds in the 

ears or in the head. A mechanism of tinnitus generation 
has been hypothesized from the viewpoint of general 
neurophysiology [1]. Sound therapy techniques for tinnitus 
have been proposed. They have the clinical effect that the 
sufferers temporarily stop perceiving tinnitus after the 
treatment [2]. To account for mechanisms of tinnitus 
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generation and the clinical effects of sound therapies from the 
viewpoint of neural engineering, we constructed a 
computational model using a neural oscillator for the tinnitus 
generation and its management by sound therapy. We 
attempted to explain the mechanisms of tinnitus generation 
conceptually and describe its inhibition using sound stimuli. 
It was detected that this model has a bistable state, i.e., a 
stable oscillatory state and a stable equilibrium 
(non-oscillatory) state coexist at a certain parameter region. It 
was also detected that by providing the model with sinusoidal 
or noise stimulus that is hypothesized as sound for treatment 
of tinnitus we can inhibit the oscillation. By hypothesizing 
that the oscillation and the equilibrium correspond to 
generation and inhibition of tinnitus, respectively, we 
reported that these phenomena could explain the fact that the 
habituated human auditory system temporarily halts 
perception of tinnitus following sound therapy [3-5]. Our 
model is built by a somewhat conservative simplification of 
the central auditory pathways and associated central nervous 
system areas that are relevant to tinnitus. In the present paper, 
we propose a different model composed of model neurons 
described by simplified Hodgkin-Huxley equations [6-8]. 
This model is still conceptual since it consists of only three 
neurons, but more realistic than the previous one because it 
shows time series of firings of neurons. We show here that 
inhibition of the oscillation can be observed in this model as 
well by constant or pulse train stimulus. Through numerical 
simulations we found out that adequate intensity of stimulus 
is required for inhibition of the oscillation.  

II. A NEURONAL NETWORK MODEL WITH SIMPLIFIED 
HODGKIN-HUXLEY EQUATIONS 

We propose a neuronal network model shown in Fig. 1 in 
which firing sequences in the nervous system are simulated. 
The model is composed of two excitatory neurons and one 
inhibitory neuron. The two excitatory neurons, E1 and E2, are 
mutually coupled forming a positive feedback loop. The 
excitatory neuron E1 and the inhibitory neuron I are also 
mutually coupled. They form a negative feedback loop. The 
positive feedback loop brings sustained firings. The negative 
feedback loop controls the firing rate. The coupling strength 
between neurons is denoted by Cij ( i, j ∈ 1, 2, I{ } ). The 
neuron E1 receives external stimuli S that is afferent signal 
due to the acoustic stimuli that are employed in sound 
therapy. We express the dynamics of the model by a 
simplified version of Hodgkin-Huxley equations (HH) [6-8]. 
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We employed it instead of HH because we can reduce the 
number of state variables for each neuron from four to two. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  A neuronal network model. 
 

A. A model without plasticity 
We describe the basic dynamics of the model as 
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where v is the membrane potential and h is the variable 
associated with activation of potassium ion channel in the 
neuron E1, E2 or I. The functions G (v, m, n, h)  and 
m∞ (v) are expressed as 
 
 

(7) 
and 

(8) 
respectively. The functions α m (v)  and βm (v)  in Eq. (8) are 
expressed respectively as 
 

(9) 
and 

(10) 

Functions α h (v)  and βh (v)  in Eq. (2), (4), (6) are expressed 
respectively as 

(11) 

(12) 
The parameters were fixed as Cm=1[μF/cm2], 
g Na = 120[mS /cm2 ] , g K = 36[mS /cm2 ] , 

g l = 0.3[mS /cm2 ] , VNa=115[mV], VK = −12 [mV], 
Vl=10.6[mV], based on the values in Hodgkin-Huxley model. 
The output of the neuron is denoted by zj and  expressed as 
function of the membrane potential vj as 

(13) 

B. A model with plasticity 
To reproduce the effect of sound therapy, we assume that 

the coupling strength from the neuron E1 to the neuron E2, 
C12, has plasticity in such a way that it increases when the 
neurons E1 and E2 fires simultaneously, and decreases when 
the firings of the neurons E1 and E2 are not synchronized. This 
assumption is based on Hebbian hypothesis regarding 
synaptic plasticity [9]. We describe the dynamics of C12 as 
 

                                                          ,                           (14) 
 
where C0, b and τ are positive constants. The constant C0 is 
associated with the equilibrium of C12. The constants b and τ 
denote the efficacy of synaptic plasticity and the time 
constant of C12, respectively. 

(a) Non-oscillatory state 

(b) Oscillatory state 

Fig. 2.  Non-oscillatory state and oscillatory state in the model. 

dv1

dt
= G(v1,m

∞(v1),0.8(1−h1),h1)+C12z2 +S

Cm

dh1

dt
=αh (v1)(1−h1)+βh (v1)h1

dv2

dt
= G(v2,m

∞(v2),0.8(1−h2),h2)+C21z1 −C2I zI

Cm

dh2

dt
=αh (v2)(1−h2)+βh (v2)h2

dvI

dt
= G(vI ,m

∞(vI ),0.8(1−hI ),hI )+CI 2z2

Cm

dhI

dt
=αh (vI )(1−hI )+βh (vI )hI

G (v,m,n, h) = g Na m 3h (VNa − v) +

g K n 4 (VK − v) + g l (Vl − v)

αm (v) = 0.1(25− v) e( 25−v ) 10−1{ }

m∞ (v) = αm (v) αm (v) + βm (v){ }

β m (v ) = 4 e − v 18

α h (v ) = 0.07 e − v 20

β h (v ) = 1 e( 30− v ) 10 + 1{ }

dC12

dt
= −C12 +b(z1 − 0.5)(z2 − 0.5)+C0

τ

z j =1 1+ e−(vj−0.5) 0.1{ }



  

III. ANALYSIS OF THE MODEL WITHOUT PLASTICITY 
We conducted numerical simulations of the model. 
First we show the results when we changed the synaptic 

coefficient C12 one by one in the range 0 < C12 < 30  as a 
parameter constant with time. Other parameters were fixed as 
C21=10, C2I=10, and CI2=20. When C12 < 2  or 17 ≤ C12 < 30 , 
the model converges to the non-oscillatory steady states with 
all the initial states that we tried. When 2 ≤ C12 ≤ 16 , the 
model is bistable and either non-oscillatory steady states as in 
Fig. 2 (a) or oscillatory steady states as in Fig. 2 (b) can be 
obtained depending on the initial states. 

IV. ANALYSIS OF THE MODEL WITH PLASTICITY 
We investigated the effect of stimulation on the model with 

synaptic plasticity in C12 using Eq. (14). We fixed the 
parameters in Eq. (14) as C0=2, b=40 and τ=50[ms]. 

A. Constant Stimulation 
First we provided the model with constant stimulation. Fig. 

3 shows the result when stimulation amplitude is 5 μA cm2 . 
Stimulation period is 100ms. The oscillation was inhibited by 
the stimulus not less than 5 μA cm2 . 
 

 
Fig. 3.  A successful result for inhibition of oscillation by constant stimulus. 
Amplitude is 5 μA cm2 . Stimulation period is 100ms. 
 

B. Pulse Train Stimulation 
Let us illustrate next the simulation results when pulse train 

is used as stimulus. Each pulse duration is 1ms. As shown in 
Fig. 4, the oscillation is not inhibited by the pulse train in 
which pulse amplitude is 5 μA cm2 , iteration period is 10ms, 
and stimulation period is 100ms. By making the stimulation 
period longer or pulse amplitude larger, we are able to inhibit 
the oscillation. As shown in Figs. 5 and 6, the results are 
successful when stimulation period is not less than 200ms, or 
pulse amplitude is not less than 20 μA cm2 . 

When iteration period is 3ms, we cannot inhibit the 
oscillation with pulse amplitude of 5 μA cm2  as well as shown 
is Fig. 7. As shown in Fig. 8, the results are successful when 
pulse amplitude is not less than 13 μA cm2 . 

 
Fig. 4.  An unsuccessful result for Inhibition of oscillation by pulse train 
stimulus. Pulse amplitude is 5 μA cm2 . Iteration period is 10ms. 
Stimulation period is 100ms. 
 

 
Fig. 5.  A successful result for Inhibition of oscillation by pulse train stimulus. 
Pulse amplitude is 5 μA cm2 . Iteration period is 10ms. Stimulation period is 
200ms. 
 

 
Fig. 6.  A successful result for Inhibition of oscillation by pulse train stimulus. 
Pulse amplitude is 20 μA cm2 . Iteration period is 10ms. Stimulation period 
is 100ms. 



  

 
Fig. 7.  An unsuccessful result for Inhibition of oscillation by pulse train 
stimulus. Pulse amplitude is 5 μA cm2 . Iteration period is 3ms. Stimulation 
period is 100ms. 
 

 
Fig. 8.  A successful result for Inhibition of oscillation by pulse train stimulus. 
Pulse amplitude is 13 μA cm2 . Iteration period is 3ms. Stimulation period is 
100ms. 
 

The results show that shorter iteration period of pulse 
stimulus makes smaller pulse amplitude inhibit the 
oscillation. The effects of different values of parameters C0 
and b have not been investigated. 

The reason why inhibition of oscillation occurs is as 
follows. When no stimulus is provided, the firings of neurons 
E1 and E2 are synchronized. When constant or pulse train 
stimulus is provided, those firings are not synchronized. It 
makes the coupling strength C12 decrease according to Eq. 
(14). Once C12 is decreased to the value in which only 
non-oscillatory solution exists and the stimulus stops, the 
model neurons stop firing. 

V. DISCUSSION 
The parameters of plasticity were arbitrarily determined so 

that the simulation is performed within appropriate time. The 
time scale would be much longer in the clinical situation. 
Further correspondence of the simulation results to clinical 
data has not been examined. 

At the present time we are not able to specify what regions 
in the brain correspond to each model neuron in the present 
stage. The model is assumed to represent tonotopic 
organization and depends on the perceived pitch and reported 
frequency of tinnitus. Based on the anatomical structure of 
the auditory system, the proposed model is likely to be 
located in the thalamus, at which a massive corticofugal 
project ends. The thalamo-cortico-thalamic loop forms an 
ideal positive oscillatory loop, while the thalamic 
interneurons and thalamic reticular GABAergic neurons 
likely to play the role as the inhibitory neuron in the present 
model.  

VI. CONCLUSION 
In this study a conceptual and computational neuronal 

network model with plasticity in the human auditory system 
was constructed to explain the mechanisms of tinnitus and its 
management by sound therapy. The model is bi-stable in a 
certain parameter region, where a stable oscillatory state and 
a stable equilibrium (non-oscillatory) state coexist. Through 
analysis of this model, it was shown that oscillation can be 
inhibited by supplying constant or pulse train stimulus to the 
model.  For future work, we will examine the effect of noise 
stimulation and the reappearance of tinnitus after stimulation 
that occurs in clinical situations. It is required to compare the 
simulation results with the clinical data. Development of a 
more elaborate model is also required. 
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