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Abstract: - Tinnitus is the perception of phantom sound in the ears or in the head. There are many therapeutic 
approaches for tinnitus and sound therapy is one of the techniques for its treatment. In order to investigate 
mechanisms of tinnitus generation and the clinical effects of sound therapy from the viewpoint of neural 
engineering, we have proposed computational models with plasticity by Hebbian hypothesis using a neural 
oscillator or coupled model neurons described by simplified Hodgkin-Huxley equations. In the present paper, a 
neuronal network model with synaptic plasticity by STDP (spike-timing-dependent plasticity) hypothesis is 
proposed for replication of the clinical results that human auditory system temporarily halts perception of tinnitus 
following sound therapy.  
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1   Introduction 
Tinnitus is the perception of phantom sound in the ears 
or in the head [1, 2]. For the cause of tinnitus, 
contribution of neural plasticity to tinnitus has been 
discussed [3-5]. Tinnitus has many subclasses and 
attempts have been made to categorize tinnitus based 
on its characteristics that in turn can facilitate the 
selection of treatment method [6]. Among a number of 
therapies sound therapy techniques for its treatment 
have the clinical effect that tinnitus disappears or 
reduces in its loudness after the sound presentation [7]. 
The mechanisms of tinnitus and its management by 
sound therapy, however, are not clear.  

To account for those mechanisms from the 
viewpoint of neural engineering, previously we had 
proposed a computational model using a neural 
oscillator [8, 9]. We demonstrated that the model 
conceptually reproduces tinnitus generation and its 
inhibition using sound stimuli. It was detected that by 
providing the model with sinusoidal or noise stimulus 
that is hypothesized as sound for treatment of tinnitus 
we can inhibit the oscillations. This was accomplished 
by incorporating neural plasticity through parameters 
such that their values can be updated. By 
hypothesizing that the oscillation and the equilibrium 
correspond to generation and inhibition of tinnitus, 
respectively, we reported that these phenomena could 
explain the fact that the habituated human auditory 

system temporarily halts perception of tinnitus 
following sound therapy. However, that model relied 
on a somewhat conservative simplification of the 
central auditory pathways and associated central 
nervous system areas that are relevant to tinnitus.  

Next we proposed a different model [10. 11] 
composed of model neurons described by simplified 
Hodgkin-Huxley equations [12, 13]. This model is still 
conceptual since it consists of only three neurons with 
positive and negative feedbacks, but more realistic 
than the previous one because it shows time series 
corresponding to the firings of neurons. We showed 
that inhibition of the oscillation can be observed in this 
model as well by constant or pulse train stimuli. 

In those models, the synaptic plasticity was 
modeled applying Hebbian hypothesis [14] to one of 
the couplings of the components in the model. Hebbian 
hypothesis has been adopted in a number of neural 
network models for many years. As a newer 
biologically plausible hypothesis, “spike-timing-
dependent plasticity (STDP)”, was proposed for the 
mechanism of synaptic plasticity [15, 16].  

In the present paper, we propose a neuronal network 
model with a plastic coupling of neurons expressed by 
STDP equations. The structure and equations for the 
membrane potentials of the neurons are the same as 
those in the former model. We demonstrate the results 



of computer simulation of this model. The results show 
that the inhibition of oscillation can be replicated with 
appropriate input and model parameters, similarly to the 
previous, which explains the effect of sound therapy. 

 
 
2   A neuronal network model 
We propose a neuronal network model shown in Fig. 1 
in which firing sequences in the nervous system are 
simulated. This model is a conceptually simplified 
system of a tinnitus generation network.  

It is composed of two excitatory neurons and one 
inhibitory neuron as shown in Fig. 1. This model 
includes a positive feedback loop of the excitatory 
neurons E1 and E2 mutually coupled, and a negative 
feedback loop with the excitatory neuron E2 and the 
inhibitory neuron I that are also mutually coupled. The 
negative feedback loop controls the firing rate. The 
model can be bistable with a sustained firing state and 
a non-firing state.  

The coupling strength between neurons is denoted 
by Cij (

€ 

i, j ∈ 1, 2, I{ }). The neuron E1 receives external 
stimuli S that is afferent signal due to the acoustic 
stimuli that are employed in sound therapy. 

We express the dynamics of the model by a 
simplified version of Hodgkin-Huxley equations (HH) 
[12, 13, 17]. We employed it instead of HH to save the 
time of simulation by reduction of the number of state 
variables for each neuron from four to two. 

 
Fig. 1.  Basic structure of the present model 

 
2.1 Formulation of the model without 
plasticity 
We describe the basic dynamics of the model as 

, (1) 

€ 

dh1
dt

=αh (v1)(1− h1) + βh (v1)h1 ,                                      (2) 

,                       (3) 

€ 

dh2
dt

=αh (v2)(1− h2) + βh (v2)h2 ,                                    (4) 

,                                     (5) 

and 

€ 

dhI
dt

=αh (vI )(1− hI ) + βh (vI )hI .                                       (6) 

where v is the membrane potential and h is the variable 
associated with activation of potassium ion channel in 
the neuron E1, E2 or I. The functions 

€ 

G (v,m, n, h)  and 

€ 

m∞ (v)are expressed as 

€ 

G (v,m,n,h) = g Nam3h(VNa − v) +

g K n 4 (VK − v) + g l (Vl − v) ,
                   (7) 

€ 

m∞ (v) =αm (v) αm (v) + βm (v){ }                                     (8) 

and 

€ 

n = 0.8(1− h)                                                                       (9) 

respectively. The functions 

€ 

αm (v)  and 

€ 

βm (v)  in Eq. (8) 
are expressed respectively as 

€ 

αm (v) = 0.1(25− v) e(25−v) 10−1{ }                                  (10) 

and 

€ 

βm (v) = 4 e−v 18                                                            (11) 

Functions 

€ 

αh (v)  and 

€ 

βh (v)  in Eq. (2), (4), (6) are 
expressed respectively as 

€ 

αh (v) = 0.07 e−v 20                                                        (12) 

and 

€ 

βh (v) = 1 e(30−v) 10+1{ } .                                              (13) 

The parameters of the neuron model were fixed as 
Cm=1[µF/cm2], 

€ 

g Na = 120[mS /cm2 ] ,

€ 

g K = 36[mS /cm2 ] , 

€ 

g l = 0.3[mS /cm2 ] , VNa=115[mV], 

€ 

VK = −12   [mV], 
Vl=10.6 [mV], based on the values in Hodgkin-Huxley 
model.  

The output of the neuron to their postsynaptic 
neurons is denoted by zj and expressed as function of 
the membrane potential vj as 

€ 

z j = {
1 (v j ≥ 6)
0 (v j < 6)

.                                                    (14) 

In Eq. (14) the threshold value is given six in order 
to remove the cases where the output value 1 arises 
when the neurons do not fire. 

The bias term D is introduced in the equation of the 
membrane v1 of the neuron E1, Eq. (1) in order to 
compensate for the decrease of output pulses due to the 



larger threshold of output function. The bias may also 
be introduced in the equations of v3 and vI, Eqs. (3) and 
(5). Here it is given only to Eq. (1) to minimize the 
change from the previous model [10]. 
 
2.2 Formulation of plasticity 
To replicate the effect of sound therapy, we assume 
that the coupling strength from the neuron E1 to the 
neuron E2, C12, has plasticity. In the present model the 
plasticity based on STDP hypothesis [15, 16] is 
introduced. The key idea of this hypothesis is that 
when the presynaptic neuron fires before the 
postsynaptic neuron, the synaptic strength becomes 
stronger (long term potentiation), and when the 
postsynaptic neuron fires before the presynaptic 
neuron fires, the synaptic strength becomes weaker 
(long term depression). The hypothesis has been 
adopted in a number of computational models of 
neuronal networks [18]. This mechanism is simply 
modeled in the present study as follows.  

The time difference between firings of neuron E2 
and neuron E1, t21, is defined as 

€ 

t21 = t2 − t1,                                                                (15) 

where t1 and t2 are the latest firing times of E1 and  E2, 
respectively as shown in Fig. 2. The value of coupling 
strength with plasticity C12 at time t +Δt, C12(t +Δt), is 
given by addition of the value at time t, C12(t), and the 
change of C12, ΔC12,  

 
Fig. 2 Definition of firing time. 

 

 
Fig. 3 Modeling of STDP hypothesis. 

 

€ 

C12(t +Δt) =C12(t) +ΔC12 ,                                     (16) 

where Δt is the time step of calculation, and ΔC12 is 
given as 

€ 

ΔC12 =
dC12MIN
T1

t21 − dC12MIN                                         (17) 

when 

€ 

0 < t21 <T1 , 

€ 

ΔC12 =
dC12MAX
T2

t21 + dC12MAX                                        (18) 

when 

€ 

−T2 < t21 ≤ 0 , and 

€ 

ΔC12 = 0                                                                    (19) 

when 

€ 

t21 ≤ −T2  or 

€ 

t21 ≥T1, which is illustrated in Fig. 3. 

 
 
3   Results 
We demonstrate the results of computer simulation of 
the model. Throughout the simulation the parameter 
values 

€ 

D =11 , 

€ 

C21 =10 , 

€ 

C2I =10 , 

€ 

CI 2 = 20  were 
employed.  
 
3.1 Analysis of the model without input or 

plasticity 
Without stimulation or plasticity, the model has two 
stable solutions, an oscillatory state by sustained 
firings and a non-firing state, which are bistable for a 
parameter region. We performed the simulation 
changing the value of the coupling coefficient C12 by 
0.1 in the range 

€ 

0 <C12 ≤ 30 .  
The non-firing state exists for any value of C12 in 

the range. On the other hand the oscillatory state exists 
when 

€ 

C12 ≥1.9 . That is, the two states coexist when 

€ 

C12 ≥1.9 . The larger C12 brings the larger basin of the 
oscillatory solution in the state space of the model in 
the region. It corresponds to the clinical fact that a 
number of patients of tinnitus claim that they do not 
always hear sound when there is no external sound. 
 
3.2 Analysis of the model with input and 

plasticity 
The inhibition of oscillation by constant input with 
amplitude I as stimulus S to neuron E1 was examined 
with plasticity. The constant input I was applied for 
100ms from 200ms to 300ms to the network that is 
oscillating in the simulation. The parameter values 

€ 

dC12MAX = 0.048 , 

€ 

dC12MIN = 0.001 , 

€ 

T1 = 25 [ms]  , 

€ 

T2 = 5 [ms] and 

€ 

Δt = 0.01[ms] were employed for 
plasticity. The time scale of the change of the synaptic 
strength is much smaller than the clinical process. It 
was arranged so that the simulation is completed in a 



reasonable time. The initial value of the coupling 
strength C12 is denoted by 

€ 

C0 . Simulations were 
performed for several values of 

€ 

C0 . The amplitude I of 
the input was changed by 0.1 

€ 

[µA/cm2 ]  in the range of 

€ 

0 < I ≤10.  

 
Fig. 4.  An unsuccessful simulation result, 

€ 

C0 = 4 , 

€ 

I = 4[µA/cm2] , 

 

Fig. 5.  A successful simulation result, 

€ 

C0 = 4 , 

€ 

I = 4.5[µA/cm2] . 

Fig. 4 shows an unsuccessful result and Fig. 5 
shows a successful result when 

€ 

C0 = 4 . As shown in 
Fig. 4 and Fig. 5, the constant input with I=4 

€ 

[µA/cm2] 
fails to inhibit the oscillation of the network, while the 

input with I=4.5 

€ 

[µA/cm2]  for 100ms makes the 
network stop the oscillation after the input is removed. 
With values of I smaller than 4 

€ 

[µA/cm2] of I, the 
oscillation was sustained, and with values of I larger 
than 4.5

€ 

[µA/cm2], the oscillation was inhibited after 
the input was removed.  

This threshold of the input value I for the inhibition 
of the oscillation was larger with the smaller value of 
the initial value of the coupling strength C12, C0. . 

We cannot state in the present model that the 
inhibition of oscillation is reproduced as the result of 
synaptic plasticity. The oscillation stops in the present 
model due to the change of the state of the model by 
the input. Hence, further investigation of modeling is 
necessary in order to reproduce the inhibition of 
oscillation by synaptic plasticity. 

 
 
4   Conclusion 
In this study a conceptual and computational neuronal 
network model with synaptic plasticity by STDP 
hypothesis in the human auditory system was proposed 
to explain the mechanisms of tinnitus and its 
management by sound therapy. Simulation results of 
this model show that oscillation of the model can be 
inhibited with appropriate input and model parameters, 
similarly to the previous neural oscillator model and 
the neuronal network model with conventional 
Hebbian hypothesis for plasticity. It means that the 
effect of acoustic stimuli in the sound therapy of 
tinnitus is replicated. 

However, the change of the plastic coupling 
strength between neurons in the model has not been 
found in the simulation so far. Some change of the 
state condition of the model by supplying constant 
input to the model has been the cause of the inhibition 
of the oscillation.  In order to demonstrate that the 
synaptic plasticity brings the inhibition of oscillation, 
further investigation of the modeling is necessary. 

Our future work will expand this model so that it 
can more effectively relate to the underlying 
physiology of tinnitus, and explore better stimulation 
for its inhibition. This in turn will result in 
improvement in designing sound therapy techniques 
and stimuli. 
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