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ABSTRACT 
Fitts’ law has proven to be a strong predictor of pointing 
performance under a wide range of conditions. However, it 
has been insufficient in modeling small-target acquisition 
with finger-touch based input on screens. We propose a 
dual-distribution hypothesis to interpret the distribution of 
the endpoints in finger touch input. We hypothesize the 
movement endpoint distribution as a sum of two 
independent normal distributions. One distribution reflects 
the relative precision governed by the speed-accuracy 
tradeoff rule in the human motor system, and the other 
captures the absolute precision of finger touch independent 
of the speed-accuracy tradeoff effect. Based on this 
hypothesis, we derived the FFitts model—an expansion of 
Fitts’ law for finger touch input. We present three 
experiments in 1D target acquisition, 2D target acquisition 
and touchscreen keyboard typing tasks respectively. The 
results showed that FFitts law is more accurate than Fitts’ 
law in modeling finger input on touchscreens. At 0.91 or a 
greater R2 value, FFitts’ index of difficulty is able to 
account for significantly more variance than conventional 
Fitts’ index of difficulty based on either a nominal target 
width or an effective target width in all the three 
experiments.  
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INTRODUCTION 
Since originally published in 1954, Fitts’ law (Eq. 1) [11] 
has proven to be one of the most robust and successful 
models of human motor behavior. In HCI, Fitts’ Law is 
typically defined as:  

                    𝑇 = 𝑎 + 𝑏 log2 �
𝐴
𝑊

+ 1�,                                (1) 

where 𝑇  is the average time taken to complete the 

movement, 𝐴 is the distance from the starting point to the 
center of the target, 𝑊 is the width of the target, 𝑎 and 𝑏 are 
constants reflecting the efficiency of the pointing system.  

Because of its strong predictive power, Fitts’ law has served 
as one of the quantitative foundations for human-computer 
interaction research and design. It has been used as a 
theoretical framework for computer input device evaluation 
[6, 18], a tool for optimizing new interfaces [5, 16], a 
predictive element in complex gesture recognition 
algorithms [26], as well as a logical basis for modeling 
more complex HCI tasks [1]. 

Dating back from Fitts’ original studies [11], target 
acquisition tasks were typically carried out with a stylus or 
a cursor that is much smaller than the targets. As finger 
touch on the popular smart phones and tablets emerges as 
one of the main input modalities today—the post-PC 
computing era—examining Fitts’ law for finger touch has 
been attracting attention from HCI researchers [8, 20]. A 
critical challenge in applying Fitts’ law to finger input is 
that finger input is imprecise, especially relative to smaller-
sized targets [8, 20, 14, 13], due to the obvious and well-
known “Fat Finger” problem. Previous research showed 
that Fitts’ law’s predictive power dropped when targets 
were small [7, 22]. Our experiments presented later in this 
paper confirmed such degradation of the conventional 
forms of Fitts’ law for small target acquisition using finger 
input as well.  

To accurately model finger input, we propose a dual-
distribution hypothesis to interpret the distribution of 
endpoints of finger input. We hypothesize that the endpoint 
distribution is a sum of two independent normal 
distributions. One reflects the relative touch precision 
governed by the speed-accuracy tradeoff in the human 
motor system, and the other reflects the absolute precision 
of finger touch independent of the speed-accuracy tradeoff 
effect.   

Based on this hypothesis, we derive the FFitts model—an 
expansion and also a refinement of Fitts’ law for finger 
touch input (Eq 2). Our study results show that the FFitts 
model is strong in predicting finger touch input 
performance, and it outperforms conventional Fitts’ law 
with either a nominal target width (Eq. 1, hereafter referred 
to as 𝐼𝐷𝑛  model) or an “effective target” width (Eq. 3, 
hereafter referred to as 𝐼𝐷𝑒 model) in both 1D and 2D Fitts’ 
aimed movement tasks, as well as in a text entry task in 
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which the Digraph-Fitts model [16] was used to predict text 
entry speed.  

The contributions of this paper are two-fold: 

1) We propose the dual-distribution hypothesis to interpret 
the distribution of endpoints for finger input.  

2) We derive the FFitts law (Eq. 2) model based on the 
dual-distribution hypothesis: 

 𝑇 = 𝑎 + 𝑏 log2 �
𝐴

�2𝜋𝑒(𝜎2−𝜎𝑎2)
+ 1�              (2) 

where 𝜎is the standard deviation of the touch points, and 𝜎𝑎 
reflects the absolute precision of the input finger, which is 
independent of the task.  

To our knowledge this is the first time Fitts’ law has been 
systematically and successfully extended to finger input on 
phone-sized touchscreens. In three experiments we show 
that this model is able to better predict finger touch 
performance than the conventional forms of Fitts’ law. 

RELATED WORK 

Effective Width Adjustment Method 
Fitts’ law in its original form predicts human (performer) 
movement time from the nominal task parameters of target 
distance (A) and target width (W). The logarithm of the 
ratio A/W, measured in bits, was viewed as the task’s index 
of difficulty. It was realized that the performer may over- or 
under-utilize the target size W. In other words the 
performer’s actual pointing precision could be different 
from the nominal task specification [9, 18, 21].  The most 
common way of compensating for this discrepancy is to 
replace the nominal target width W with the so-called 
effective width, 𝑊𝑒 = √2𝜋𝑒𝜎 , hence:  

𝑇 = 𝑎 + 𝑏 log2 �
𝐴

√2𝜋𝑒𝜎 
+ 1�                               (3) 

The justification for the use of 𝑊𝑒  is commonly traced to 
Welford [21], which in turns attributes it to Crossman [9]. 
Crossman’s reasoning of 𝑊𝑒  relies on an information-
theoretic metaphor. log2 𝑊  was viewed as the entropy of 
the endpoint distribution. Since endpoints are observed to 
be normally distributed about the center of the target, the 
theoretically correct expression for endpoint entropy 𝐻(𝑜), 
is 𝐻(𝑜) = log2 √2𝜋𝑒𝜎 [9,18, 21]. 

Although this information-theoretic foundation is only 
metaphorical without stronger or more rigorous basis, 
adjusting effective width based on √2𝜋𝑒𝜎  has been 
advocated by many researchers of Fitts’ Law. For example, 
MacKenzie [18] suggested that “this adjustment lies at the 
very heart of the information-theoretic metaphor that 
movement amplitude area analogous to ‘signals’ and end-
point variability (via target width) is analogous to ‘noise’.” 
(section 3.4 Effective Target Width, paragraph 2, p 106). 

Recently, Zhai et al. [25] empirically investigated the effect 
of using effective width vs. nominal width. Their work 
showed (although not completely) that 𝐼𝐷𝑒  partially 
compensated for subjective accuracy choice and reduced 
the discrepancy of a and b estimates between different 
experimental conditions. The R2

 value of T vs. 𝐼𝐷𝑒  
regression across different operating biases was higher than 
the R2

 value of T vs. 𝐼𝐷𝑛 regression.  

Given the justification from information-theoretic metaphor 
and empirical foundation, adjusting W based on √2𝜋𝑒𝜎 has 
been widely adopted if the observed error rates deviate 
from 4%. In this paper, we are particularly interested in 
whether 𝐼𝐷𝑒  would also compensate for a finger’s 
imprecision and compare the 𝐼𝐷𝑒  model with the proposed 
FFitts index of difficulty 𝐼𝐷𝑓 .  

Fitts’ Law and Finger Input 
There has been an increasing interest in understanding the 
“Fat Finger” problem, and examining Fitts’ Law for finger 
input.  

As a key input modality for touchscreens, touch input has 
been extensively studied by many researchers. Holz and 
Baudisch’s research [13] showed that the offsets of touch 
point locations from the intended point were affected by the 
angles between the finger and the touch surface (i.e., pitch, 
roll and yaw). In the following studies [14], they discovered 
that users relied on the visual features of fingers such as 
finger outlines and nail outlines for placing the touch 
points. As touchscreen hardware usually reported the 
centroid of the contact area between the finger and the 
touchscreen as the touch point, the registered position could 
be very different from the perceived touch point.  

Cockburn et al. [8] recently compared finger input, stylus 
and mouse in tap, drag and radial pointing tasks.  The 
results showed that the completion time of finger tap and 
drag strongly conformed to the  𝐼𝐷𝑛  model, though the error 
rate was high (around 12%) when W = 5 mm. W values in 
their study varied in a wide range (W = 5, 12.5, and 20 
mm). They did not particularly investigate small target 
acquisition tasks.  

Sasangohar et al. [20] conducted a Fitts’ Reciprocal 
Tapping task to evaluate mouse and touch input on a 
tabletop display. Their study also showed very high error 
rates when targets were small: the error rates were above 
20% with targets in which W = 5mm. They did not report 
the regression results for Fitts’ law.    

Lee and Zhai [15] studied soft button finger tapping 
performance on smartphones. It is interesting to note that 
Fitts’ law in its traditional form clearly did not work well 
for their tasks. When the target was smaller, finger touch 
performance degraded much faster than Fitts’ law would 
have predicted. 



 

Fitts’ Law in Small Target Acquisition Tasks 
Although Fitts’ law has proven to be a strong and robust 
model under a wide range of conditions, its prediction 
power drops in small-target acquisition tasks. Welford et al. 
[22] observed a departure of 𝐼𝐷𝑒  model prediction from the 
actual completion time in a pencil on paper tapping task. 
They proposed using 𝑊𝑒 − 𝑐  instead of  𝑊𝑒(= √2𝜋𝑒𝜎), in 
Eq. 3, where 𝑐 was an experimentally determined constant 
attributed to hand tremor. The modified version gave a 
good fit to the observed results. 

Chapuis and Dragicevic [7] also observed a clear departure 
from Fitts’ law for small target acquisition using a mouse. 
Their studies confirmed the existence of a small-scale effect 
that violates Fitts’ law, and the causes are both visual and 
motor. They empirically demonstrated that the c constant 
adjustment as originally proposed by Welford in passing, 
was effective in their dataset. 

In sum, there is sufficient evidence in the literature to show 
Fitts’ law’s degradation in small target acquisition tasks and 
particularly so when the implement of the acquisition is a 
“fat finger”. 

MODELING FINGER TOUCH WITH FITTS’ LAW 

Dual-Distribution Hypothesis 
Fitts’ law in essence reveals a speed-accuracy tradeoff rule 
in human control performance. The less precisely the task is 
(e.g., acquiring a wider target over a shorter distance), the 
faster it is to accomplish the task, and vice versa. As 
revealed in Eq. 1, the task precision is specified by (𝐷 +
𝑊)/𝑊 and speed is measured in the movement time 𝑇.  

If the performer does not comply with the precision 
specified by the nominal task parameters, the “effective 
width” adjustment has been suggested in lieu of  𝑊 [9, 18, 
21]. An underlying assumption behind the “effective width” 
adjustment is that the variability of endpoints is solely 
determined by the speed-accuracy tradeoff rule in the 
human motor system. Therefore, the whole variability in the 
endpoints (𝜎 ) is taken into account when estimating the 
“effective width” (𝑊𝑒 = √2𝜋𝑒𝜎).  

In finger input, this assumption faces challenges.  
Obviously a finger per se is less precise than a mouse 
pointer or a stylus. Variability in endpoints was observed no 
matter how quickly/slowly a user performed the task. For 
example, Holz and Baudisch’s studies [13, 14] showed that 
even when users were instructed to take as much time as 
they wanted to acquire a target on a touchscreen, there was 
still a large amount of variability in endpoints.  

These observations indicated that a portion of the variability 
in endpoints is independent of the performer's desire to 
follow the specified precision and cannot be controlled by a 
speed-accuracy tradeoff. This portion of variability reflects 
the absolute precision of the finger input. In other words, 
the observed variability in the endpoints may originate from 
two sources: the relative precision governed by the speed-

accuracy tradeoff of human motor systems, and the absolute 
precision uncertainty of the finger per se. 

More formally, we propose a dual normal distribution 
hypothesis to interpret the distribution of endpoints for 
finger input. Assuming that the location of the endpoints is 
a random variable 𝑋  following a normal distribution 
𝑋~𝑁(𝜇,   𝜎2) , we hypothesize that 𝑋  is the sum of two 
independent, normally distributed random variables, 
𝑋𝑟~𝑁(𝜇𝑟 ,   𝜎𝑟2) and 𝑋𝑎~𝑁(𝜇𝑎,   𝜎𝑎2).  

𝑋𝑟, which can be viewed as a relative component, depends 
on the desired precision of hitting the target and the 
associated speed of the action. It is controlled by the speed-
accuracy tradeoff of the performer and reflects a precision 
relative to the movement amplitude. The faster the 
performer, the wider dispersion 𝑋𝑟 has. 

𝑋𝑎 , which can be viewed as an absolute component, is 
independent of the performer’s desire of following the 
specified task precision, and cannot be controlled by the 
speed-accuracy tradeoff. It reflects the absolute precision of 
a motor system that includes the implement (e.g., the finger, 
or a stylus) and the internal human motor control system.   

In other words, assuming that 𝑋𝑟  and 𝑋𝑎  are independent, 
the relation of 𝑋, 𝑋𝑟 and 𝑋𝑎 can be written as:  

𝑋 = 𝑋𝑟 + 𝑋𝑎 ~𝑁(𝜇𝑟 + 𝜇𝑎,𝜎𝑟2 + 𝜎𝑎2)                                (4) 

or 

𝜇 = 𝜇𝑟 + 𝜇𝑎                                                                       (5) 

𝜎2 = 𝜎𝑟2 + 𝜎𝑎2                                                                    (6)   

Note that the coordinate origin of 𝑋, 𝑋𝑟 and 𝑋𝑎 is defined at 
the center of the target. Figure 1 illustrates the dual 
distribution hypothesis in 1D Fitts’ tasks.  

 
Figure 1. Dual distribution hypothesis in 1D Fitts’ tasks. The 
two solid vertical lines represent the target, and the dashed 
line is the target center. The green, red and light blue curves 
show distributions of  𝑿𝒓 𝑿𝒂, and 𝑿. 

FFitts Law 
The dual distribution hypothesis suggests that 𝑋𝑟  is the 
distribution that reflects the variability of endpoints resulted 
from the speed-accuracy tradeoff effect. It is logically more 
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sound to use  𝜎𝑟 in lieu of 𝜎 to express the actual precision 
performers comply with. Using  𝜎𝑟  in lieu of 𝜎 in Eq (3), 
we have: 

                   𝑇 = 𝑎 + 𝑏 log2 �
𝐴

√2𝜋𝑒𝜎𝑟 
+ 1�                         (7) 

According to Eq (6), 𝜎𝑟 can be obtained as: 

𝜎𝑟 = �𝜎2 − 𝜎𝑎2                                                           (8) 

From Eqs 7 and 8, we have: 

𝑇 = 𝑎 + 𝑏 log2 �
𝐴

�2𝜋𝑒(𝜎2−𝜎𝑎2)
+ 1�                            (9) 

We refer Eq. (9) as FFitts Law, a refinement of Fitts’ law 
for Finger input. The index of difficulty of FFitts law is: 

𝐼𝐷𝑓 =  log2 �
𝐴

�2𝜋𝑒(𝜎2−𝜎𝑎2)
+ 1�                                 (10) 

FFitts law is also referred as the 𝐼𝐷𝑓 model in the remainder 
of this paper. 

In Eqs. 8, 9 and 10, 𝜎  is the standard deviation of the 
distribution of endpoints, which can be measured 
directly. 𝜎𝑎  reflects the absolute precision of the input 
finger. It may vary with individual’s finger size or motor 
impairment (e.g., tremor, or lack of).  

𝜎𝑎 can be measured in a finger calibration task, in which 
participants repeatedly acquire a target without specifying 
an amplitude on the screen. Because such tasks do not 
involve human motor systems traveling from one place on 
the screen to another, the speed-accuracy tradeoff rule has a 
negligible effect. To correctly measure the absolute 
precision of the input finger, the targets must be sufficiently 
small yet legible. Accomplishing such a task should require 
the highest possible precision the user could achieve. A 
break should be enforced between trials so that the user has 
sufficient time to attempt to accurately acquire the target. 
Note that estimating 𝜎𝑎 in this finger input calibration task 
means that 𝜎𝑎 in FFitts law (Eq. 9) is not an additional 
arbitrary or free-floating parameter in FFitts’ law—
adding 𝜎𝑎  does not add additional degrees of freedom for 
the model to fit the data during linear regression analysis. 

In our implementation of calibration tasks, the targets were 
2.4 mm wide bars (1D tasks) and 2.4 mm-diameter circles 
(2D tasks). A 1000 ms break was enforced between trials. 
Alternatively, single pixel wide lines and cross hairs could 
be used in lieu of bars and circles.  

If 𝜎𝑎  is negligible relative to 𝜎 , �𝜎2 − 𝜎𝑎2  ≈ 𝜎 . 𝐼𝐷𝑓  (Eq. 
10) becomes an approximation of the 𝐼𝐷𝑒  model (Eq. 3). It 
could happen if the input device is highly accurate (e.g., a 
stylus with a thin tip), or the target width is sufficiently 
large and performers fully utilize it. In the former, 𝜎𝑎 ≈ 0, 
while in the latter,  𝜎 ≫ 𝜎𝑎. 

We expect FFitts law would have stronger prediction power 
than the 𝐼𝐷𝑛  and 𝐼𝐷𝑒  models, especially than the 𝐼𝐷𝑒model, 

because 𝜎𝑟 is more accurate than 𝜎 in reflecting the actual 
precision human motor system in compliance with.  

To validate the dual distribution hypothesis and evaluate the 
effectiveness of FFitts law, we conducted the following 
three experiments. 

EXPT 1.  ONE-DIMENSIONAL FITTS’ TASKS  
We first examine the 𝐼𝐷𝑓  model in 1D Fitts’ tasks (i.e., 
acquiring bar-shaped targets).  

Participants and Apparatus 
We recruited 12 participants (3 females) between the ages 
of 18 and 45. All of them were right-handed and used 
touchscreen devices (e.g., smartphones) several times a day. 
The experiment was conducted on an HTC NEXUS smart 
phone running Android OS. The capacitive touch screen 
was 48mm wide and 80mm high with a resolution of 480 
×800 pixels. When a finger touched the screen, the 
approximate centroid of contact area between the finger and 
the screen was reported as the touch point.  

Design 
Each participant performed both 1D Fitts’ tasks and finger 
input calibration tasks. The orders of these two tasks were 
counterbalanced among participants.  

1D Fitts’ Task. This was a typical “discrete” 1D Fitts’ task.  
At the beginning of each trial, the smart phone played a 
beep sound and displayed a 6 mm wide horizontal grey bar 
as the starting bar, and a red horizontal target bar with 
varying width (Figure 2).  Upon successfully selecting the 
starting bar, the starting bar turned green and the 
smartphone played a starting beep sound, indicating the 
start of a trial. The starting bar appeared at a random 
position for each trial.  

 
Figure 2. (a) 1D Fitts’ Tasks (b) Experimental Setup 

The study included 6 A × W conditions, with 2 levels of A 
(20, 30 mm) crossed with 3 levels of W (2.4, 4.8, 7.2 mm), 
yielding 𝐼𝐷𝑛  ranging from 1.58 – 3.17 bits. A was measured 
from the center of the starting bar to the center of the target 
bar, and W was the width of the target bar. Each A × W 
combination included 16 trials. The target widths were 
chosen to reflect the sizes of common UI elements on 
smartphones. For example, a hyperlink on a webpage is 
approximately 2.5 mm wide and a key on a smart phone 
soft keyboard is around 4 mm wide. The orders of trials 
were randomized for each participant. 
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Finger Calibration Task. At the beginning of each trial, the 
smart phone played a beep sound and displayed a 2.4 mm 
wide red target bar across the screen. Participants were 
instructed to acquire the target with the index finger once 
the trial started. They then lifted their fingers off the screen 
and rested them comfortably. Each participant performed 
16 trials that were divided into 2 blocks. The locations of 
targets were randomized. The interval between trials was 
1000ms.   

In both tasks, participants were instructed to acquire the 
target as quickly and accurately as possible. They 
performed tasks in hold-and-tap postures:  holding the 
touchscreen device using the non-dominant hand and 
acquiring the targets with the index finger of the dominant 
hand. It is one of the most common postures of using a 
touchscreen device [3].  

The target turned yellow and the smartphone played a 
success beep sound if the touch point hit the inside of the 
target. Otherwise the target turned blue and played an 
unpleasant failure sound. After each trial, the number of 
successful trials M and the number of total trials thus far N 
in the current block was displayed on the top right corner of 
the screen in the format of M/N.  

The completion time was the elapsed time between the 
starting beep sound and the participant finished the 
acquisition task (i.e., the finger was lifted up). The error 
rate was the percentage of trials failed.  

We label touch points that were more than 20 mm away 
from the target center as “outliers” and removed them from 
the recorded data. Six trials were removed, consisting of a 
small percentage of the total number of trials (3,456).  

Touch Points for Selection 
A user’s touch action can generate a series of touch points. 
We can view a touch action in three stages: land-on, on-
screen, and take-off. Land-on refers to the moment when 
the finger first contacts the screen; on-screen is the state 
during which the finger remains in contact with the screen; 
take-off refers to the moment when the finger is lifted off 
the screen. There are different ways to determine the 
selection point based on these different stages, which may 
give different error rates. 

In the experiment the mean error rates were 17.8% (Land-
On), 16.8% (Take-Off), and 17.02% (Centroid of touch 
points). ANOVA did not show a significant main effect of 
acquisition point type on error rate (F2, 22 = 2.08, p = 0.15), 
indicating that touch point type had a minor impact on 
touch performance. In what follows we use take-off 
position as the default touch point in the subsequent 
sections without additional comments. 

Results  
Table 1 shows the error rate per A × W. When W = 2.4 and 
4.8, the error rates were substantially higher than 4%, 

indicating that participants did not comply with the nominal 
task precision in these conditions.  
A  W  𝜎 𝜎𝑟 𝑊𝑒 =  √2𝜋𝑒𝜎 Error Rate 
20 2.4 1.21 0.76 5.0 29% 
30 2.4 1.33 0.94 5.5 38% 
20 4.8 1.52 1.19 6.3 14% 
30 4.8 1.52 1.20 6.3 11% 
20 7.2 1.66 1.37 6.9 3% 
30 7.2 1.78 1.52 7.4 6% 
𝜎𝑎 0.94 mm 

Table 1. 𝝈, 𝝈𝒓 , 𝝈𝒂  ,𝑾𝒆 (mm) and Error Rate per A × W.  

Participants tended to over-utilize the target region on small 
targets. 𝑊hen W = 2.4, the Effective Width (𝑊𝑒 ) which 
indicates the actual spread of touch points was more than 
twice the nominal target width (W). 

Figure 3 shows 𝜎 and 𝜎𝑟 per 𝑊𝑒. As indicated by the dual 
distribution hypothesis, 𝜎  overestimates 𝜎𝑟  in all 
conditions. The difference between 𝜎  and 𝜎𝑟  is especially 
big when 𝑊𝑒  is small. According to the Eq 10, the 𝐼𝐷𝑓 
model becomes an approximation of the 𝐼𝐷𝑒  model if the 
effective width is large. Figure 3 visually demonstrates it: 
as 𝑊𝑒 becomes bigger, 𝜎 and 𝜎𝑟 tend to converge. 

 
Figure 3. 𝛔 and 𝛔𝐫 per 𝐖𝐞 in 1D Fitts’ tasks 

FFitts Law vs. Fitts’ Law 
We applied 𝐼𝐷𝑓 , 𝐼𝐷𝑒  and 𝐼𝐷𝑛  models separately to the 
collected data. For the 𝐼𝐷𝑓  model, 𝜎𝑎  was the standard 
deviation of the touch point distribution measured in the 
finger calibration tasks (Table 1). 

Figure 4 shows detailed results from the regression tests. As 
shown, the 𝐼𝐷𝑓  model shows a stronger fit than the 𝐼𝐷𝑒, and 
a slight improvement over the 𝐼𝐷𝑛  model. 96% of variance 
in T could be accounted for by the change of 𝐼𝐷𝑓 . In 
particularly, the 𝐼𝐷𝑓 model showed a marked improvement 
over the 𝐼𝐷𝑒  model: R2 value increased by 11%, from 0.86 
to 0.96.  The 𝐼𝐷𝑒 model appears to be a poor adjustment for 
target utilization rate in the case of finger pointing.  

To gain deeper understanding of the difference between 
different models, we compared ID values across A × W 
conditions (Table 2). 
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Figure 4.  𝑻 𝐯𝐬. 𝑰𝑫𝒏(left),  𝑻 𝐯𝐬. 𝑰𝑫𝒆 (middle), and 𝑻 𝐯𝐬. 𝑰𝑫𝒇 (right) for 1D Fitts’ Tasks.

A (mm) W (mm) 𝐼𝐷𝑛  𝑊𝑒 =  √2𝜋𝑒𝜎 𝐼𝐷𝑒  √2𝜋𝑒  × �𝜎2 − 𝜎𝑎2 𝐼𝐷𝑓 Time (ms) 

20 2.4 3.22 5.0 2.32 3.1 2.89 432 
30 2.4 3.75 5.5 2.69 3.9 3.13 483 
20 4.8 2.37 6.3 2.07 4.9 2.34 383 
30 4.8 2.86 6.3 2.53 4.9 2.82 433 
20 7.2 1.92 6.9 1.97 5.7 2.18 367 
30 7.2 2.37 7.4 2.34 6.3 2.53 394 

Table 2. 𝑰𝑫𝒏, 𝑰𝑫𝒆, and 𝑰𝑫𝒇 per A × W  in 1D Fitts’ Tasks.

𝐼𝐷𝑓  vs. 𝐼𝐷𝑒 . The following observations can be made by 
comparing 𝐼𝐷𝑓 with 𝐼𝐷𝑒 models from Table 2. 
First, 𝐼𝐷𝑓  was higher than 𝐼𝐷𝑒  across all the A × W 
conditions. The difference between 𝐼𝐷𝑓  and 𝐼𝐷𝑒  is 
especially big in small target conditions. From 𝐼𝐷𝑒 to 𝐼𝐷𝑓 , 
the ID values increased by 24.5% (A = 20) and 16.3% (A = 
30) when the target width was 2.4 mm, while they only 
increased by 10.6% (A = 20) and 8.1% (A = 30) when the 
target width was 7.2 mm.  

Second, overall there was an expansion of the range of ID 
values from 𝐼𝐷𝑒  to 𝐼𝐷𝑓 . The |𝑚𝑎𝑥(𝐼𝐷𝑒) −𝑚𝑖𝑛(𝐼𝐷𝑒)|  is 
0.72, while �𝑚𝑎𝑥(𝐼𝐷𝑓) −𝑚𝑖𝑛(𝐼𝐷𝑓)�is 0.95. 

𝐼𝐷𝑓  vs. 𝐼𝐷𝑛 . The following observations were made by 
comparing the 𝐼𝐷𝑓  with 𝐼𝐷𝑛 models. 

First, 𝐼𝐷𝑓  was smaller than 𝐼𝐷𝑛  in W = 2.4, while it was 
bigger when W = 7.2 .  𝐼𝐷𝑓  was close to 𝐼𝐷𝑛 in W = 4.8. 

Second, overall there was a shrinkage of the range of ID 
from 𝐼𝐷𝑛  to 𝐼𝐷𝑓 . The |𝑚𝑎𝑥(𝐼𝐷𝑛) − 𝑚𝑖𝑛(𝐼𝐷𝑛)|  was 1.83, 
while �𝑚𝑎𝑥(𝐼𝐷𝑓) − 𝑚𝑖𝑛(𝐼𝐷𝑓)� was 0.95. 

In summary, the 𝐼𝐷𝑓  model showed the strongest fit among 
the three models. It especially showed a drastic 
improvement over the 𝐼𝐷𝑒  model. 

EXPT 2. TWO-DIMENSIONAL FITTS’ TASKS  
In addition to the 1D situation, we also investigated 2D 
Fitts’ tasks. The experimental design was the same as in the 
1D tasks, except that targets were solid circles and W values 
were diameters. The experimental devices and the 
participants were the same as those in 1D Fitts’ tasks.  

 

Results 
We use the bivariate endpoint deviation (SDxy) as 𝜎 . 
Wobbrock et al. [23] showed that using SDxy yields a better 
model fit than using univariate deviation (SDx), which 
ignores the deviation in the orthogonal task dimension.  The 
SDxy of touch points in the 2D finger calibration tasks was 
1.5 mm, which was used as 𝜎𝑎  in the IDf  models (Table 3). 

A  W  𝜎 𝜎𝑟 𝑊𝑒 =  √2𝜋𝑒𝜎 Error Rate 
20 2.4 1.68 0.76 6.9 66% 
30 2.4 1.72 0.84 7.1 65% 
20 4.8 1.84 1.07 7.6 25% 
30 4.8 1.88 1.14 7.8 27% 
20 7.2 1.98 1.29 8.2 7% 
30 7.2 1.97 1.27 8.1 7% 
𝜎𝑎 1.5 mm 

Table 3. 𝝈, 𝝈𝒓 , 𝝈𝒂  ,𝑾𝒆 (mm) and Error Rate per A × W.  

 
Figure 5. 𝛔 and 𝛔𝐫 per 𝐖𝐞 in 2D Fitts’ tasks 

We first investigated the error rates and dispersion of touch 
points (Table 3). Similar to 1D Fitts’ tasks, error rates in W 
= 2.4 and 4.8 conditions were substantially higher than 4%. 
Participants also tended to over-utilize the target region as 
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targets become smaller. When W = 2.4, the effective width 
(𝑊𝑒 ) was more than twice of the nominal target width. 
Similar to the finding in 1D task, Figure 5 shows that 𝜎 is 
greater than 𝜎𝑟 in all conditions, and the difference between 
𝜎  and 𝜎𝑟  is especially big when 𝑊𝑒  is small. Also, as 𝑊𝑒 
becomes bigger, 𝜎 and 𝜎𝑟 tend to converge. 

FFitts Law vs. Fitts Law 
Figure 6 show regression results for different models. 
Similar to the findings in the 1D Fitts task, the 𝐼𝐷𝑓 model 
showed the strongest fit. 96% of variance of T could be 
accounted for by the changes in 𝐼𝐷𝑓. The R2 value of the 
𝐼𝐷𝑓 model is 21.5% and 12.9% higher than those of the 𝐼𝐷𝑒  
and 𝐼𝐷𝑛  models. The improvement of R2 values from 𝐼𝐷𝑒  
and 𝐼𝐷𝑛 to 𝐼𝐷𝑓 was greater than that in the 1D experiment. 

DISCUSSION OF EXPT.1 AND EXPT.2 
FFitts Law is strong in modeling finger input 
FFitts law shows strong predictive power for finger input. 
Approximately 96% of variance in T could be accounted for 
by the change of 𝐼𝐷𝑓 , in both 1D and 2D tasks.  

FFitts law is also stronger than both 𝐼𝐷𝑛 and 𝐼𝐷𝑒  models in 
predicting finger touch performance, especially in 2D tasks. 
Using the same data and number of parameters, the R2 

values of the 𝐼𝐷𝑓  model were 21.5% and 12.9% higher than  
the 𝐼𝐷𝑒  and 𝐼𝐷𝑛  models respectively.  

Based on these results, FFitts law, a refinement and 
expansion of Fitts’ law, appears to be a better modeling tool 
for small target acquisition using finger input. 

“Effective Width” method is a poor choice 
The study results showed that Fitts’ law with “effective 
width” adjustment had the poorest performance out of the 
three candidates. 𝐼𝐷𝑒  accounted for less than 80% of the 
time variance in 2D Fitts’ task. 

The dual-distribution hypothesis provides an explanation. 
Because the absolute precision (𝜎𝑎) of the finger input is 
not subtracted from 𝜎 , 𝜎  overestimates the variability of 
endpoints related to the speed-accuracy trade-off effect.  

Reflected in the ID value, 𝐼𝐷𝑒 underestimates the 𝐼𝐷𝑓 . Our 
study data showed that 𝐼𝐷𝑒 was smaller than 𝐼𝐷𝑓 across all 
the A × W, in both 1D and 2D tasks. The underestimation 
became relatively big when targets were small. For 
example, 𝐼𝐷𝑒  were 50% smaller than 𝐼𝐷𝑓  in W = 2.4 (A = 
20, 2D), while 𝐼𝐷𝑒  was just 21% smaller than 𝐼𝐷𝑓  in W = 
7.2 (A = 20, 2D).  

EXPT 3. MODELING TEXT ENTRY BEHAVIOR ON A 
TOUCHSCREEN KEYBOARD 
To further evaluate FFitts Law in practice, we applied it to 
model touch screen keyboard text entry, a critical and 
popular research topic [4, 5, 16]. Previous research shows 
that once users reach expert levels, the typing behaviors are 
largely constrained by the capacity of human motor system 
to move fingers, not by the visual search. The time to move 
the tapping device with a single finger from key i to key j 
for a given distance (Dij) and key width (Wij) follows the 
Fitts-Digraph model [16]: 

𝑀𝑇𝑖𝑗 = 𝑎 + 𝑏 𝑙𝑜𝑔2(𝐷𝑖𝑗
𝑊𝑖𝑗

+ 1)                                            (11) 

To compare the predictive power of different models, we 
collected users’ index finger tapping data on a touchscreen 
keyboard, and applied 𝐼𝐷𝑓, 𝐼𝐷𝑛, and 𝐼𝐷𝑒  models separately 
according to Eq. (11) to predict 𝑀𝑇𝑖𝑗 . 

Tapping Data Collection 
We first collect users’ tapping data on a basic touchscreen 
keyboard (Figure 7) that provided users with only asterisks 
as feedback when they entered text. The layout of the letter 
keys was exactly the same as a regular Android keyboard

 
Figure 6. 𝑻 𝐯𝐬. 𝑰𝑫𝒏(left),  𝑻 𝐯𝐬. 𝑰𝑫𝒆 (middle), and 𝑻 𝐯𝐬. 𝑰𝑫𝒇 (right) for 2D Fitts’ Tasks

A (mm) W (mm) 𝐼𝐷𝑛  𝑊𝑒 =  √2𝜋𝑒𝜎 𝐼𝐷𝑒  √2𝜋𝑒  × �𝜎2 − 𝜎𝑎2 𝐼𝐷𝑓 Time (ms) 
20 2.4 3.22 6.9 1.96 3.1 2.89 442 
30 2.4 3.75 7.1 2.38 3.5 3.26 491 
20 4.8 2.37 7.6 1.86 4.4 2.47 408 
30 4.8 2.86 7.8 2.28 4.7 2.88 462 
20 7.2 1.92 8.2 1.78 5.3 2.25 385 
30 7.2 2.37 8.1 2.23 5.3 2.75 430 

Table 4. 𝑰𝑫𝒏, 𝑰𝑫𝒆, and 𝑰𝑫𝒇 per A × W  in 2D Fitts’ Tasks
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on a smartphone. Our purpose was to capture the basic, 
native and natural text entry behaviors, without being 
affected by any modern features on smart keyboards, such 
as auto-correction or auto-completion. It also reflected the 
expert typing behaviors: typing quickly without checking 
intermediate results within a word.  

 
Figure 7. A basic keyboard we used to collect typing data. 

We recruited 11 participants with an average age of 32. All 
had experience with text entry on smartphones. Participants 
entered text with index fingers on a Samsung Galaxy 
Nexus. In the study, each participant repeated a word four 
times. By repeating a word multiple times in a row, we 
assumed that the last few repetitions would reflect a user’s 
expert behaviors. This has previously been adopted as an 
approach to approximate experts’ text input behaviors [4, 
5].  

The whole study included a set of 40 words, which were 
distributed into 4 blocks. The orders of words within a 
block were randomized. The study collected 11 
(participants) × 4 (blocks) × 10 (words) × 4 (repetitions) = 
1,760 words.  

Data Processing and Analysis 
To align the touch points with the intended keys, we 
discarded trials in which the number of touch points was 
different from the number of intended characters. 53 
unaligned trials were removed. We labeled touch points as 
outliers and removed them if the distance between the touch 
point and the center of the target key was beyond 30 mm. 

The input speed increased markedly from repetition #1 to 
#2, and plateaued after repetition #2. The means of speed 
(word per min) were 36 at #1, 40 at #2, 39 at #3 and 40 at 
#4.  The results suggest that in the given experimental task 
users probably reached expert behaviors from repetitions #2 
to #4. This finding was similar to the observation from Bi et 
al.’s work [5]. We used data in repetition #2, #3 and #4 for 
model evaluation  

Note that the input speed was calculated according to the 
following equation [24]: 

                         𝑊𝑃𝑀 =  |𝑇−1|
𝑆

× 60 × 1
5
                         (12) 

where T was the length of the word (number of characters) 
and S was the elapsed time in seconds from the moment the 

finger was lifted from the first character and to the moment 
the finger was lifted from the last character of a given word.   

Parameters for Models. Typing a digram on a touchscreen 
keyboard with one finger is in essence a 2D Fitts’ tasks for 
rectangular targets. Literature has shown different 
approaches for choosing 𝑊 for the nominal form of Fitts’ 
law (𝐼𝐷𝑛  model). In this study, we chose the key width (5 
mm), as W for  𝐼𝐷𝑛. Key width (5mm) on the keyboard was 
30% smaller than key height (7mm). Previous research 
showed that using min(W, H) as W in Fitts’ Law yielded a 
fairly successful fit for 2D Fitts tasks [2, 19].  

We used SDxy as 𝜎 in the 𝐼𝐷𝑒  model. Assuming that 𝜎𝑎 has 
little variance across tasks, we used 1.5 mm, the value 
measured in the finger calibration tasks in Exp2. as 𝜎𝑎 in 
𝐼𝐷𝑓 model. 

Classifying Digram according to Index of Difficulty. 
Digram with the same distance between two letters but 
different start or end characters were classified as the same 
A×W condition. In total, the study generated 27 unique 
nominal 𝐼𝐷𝑛 . To ensure that the Fitts’ tasks had a sufficient 
number of sampled touch points, we only picked 𝐼𝐷𝑛  which 
had more than 120 sampled touch points. Nine 𝐼𝐷𝑛  were 
selected, with the 𝐼𝐷𝑛 ranging from 1.15 to 2.77. Table 5 
shows detailed information of the selected 𝐼𝐷𝑛. 

Results 
Figure 8 and Table 5 show regression results. The results 
echoed the findings from the 1D and 2D Fitts’ studies: 𝐼𝐷𝑓  
yields the strongest fit among the three test models.  91% of 
the variance of completion time could be accounted for by 
the changes in 𝐼𝐷𝑓 . The R2

 values for 𝐼𝐷𝑛 , 𝐼𝐷𝑒  and 𝐼𝐷𝑓  
models were 0.75, 0.88, and 0.91 respectively.  

In comparison to the conventional Fitts’ law formulations 
based on either 𝐼𝐷𝑛 or 𝐼𝐷𝑒 , FFitts law also matches better 
with the keyboard tapping task, which is more complex and 
less abstract than the 1D and 2D target acquisition tasks. 
For the text entry task in which the target width, distance 
and users’ behaviors were less controlled than the 
laboratory Fitts’ tasks, FFitts law still showed stronger 
predictive power than the conventional Fitts’ law. Since the 
Fitts-digrah model, previously developed for stylus typing, 
has been an important theoretical tool for touch keyboard 
research, design and optimization [4, 5, 16], improvements 
found here with the 𝐼𝐷𝑓  model constitute an important 
contribution in their own right.  

LIMITATIONS AND FUTURE WORK 
Fitts’ law serves as a quantitative foundation for many 
applications on touchscreen devices. For example, besides 
the sizable body of touchscreen keyboard optimization 
work [4, 5], Zhai and Kristensson [26] suggested using 
Fitts’ law to refine recognition weights between two 
channels for word-gesture keyboard recognition. Since 
FFitts law has stronger predictive power than Fitts’ law on 
smart phones with finger operations, FFitts law should be



 

 
Figure 8. 𝑻 𝐯𝐬. 𝑰𝑫𝒏(left),  𝑻 𝐯𝐬. 𝑰𝑫𝒆 (middle), and 𝑻 𝐯𝐬. 𝑰𝑫𝒇 (right) for word repetition text entry tasks

Digram 
examples 

A (mm) W (mm) 𝐼𝐷𝑛  𝑊𝑒 =  √2𝜋𝑒𝜎 𝐼𝐷𝑒  √2𝜋𝑒  × �𝜎2 − 𝜎𝑎2 𝐼𝐷𝑓 Mean (SD) 
Time (ms) 

(e, r), (i, o) 6.19 5 1.15 9.57 0.72 7.3 0.89 217(56) 
(e, s), (t, f) 9.98 5 1.57 10.74 0.95 8.8 1.1 213(43) 
(o, u), (t, u) 12.38 5 1.78 8.28 1.32 5.5 1.7 260(66) 
(e, a), (d, t) 13.24 5 1.85 10.35 1.19 8.3 1.38 240(73) 
(c, h), (n, g) 15.57 5 2.024 9.52 1.4 7.24 1.66 275(84) 
(i, t), (u, p) 18.58 5 2.221 8.24 1.7 5.45 2.14 319(94) 
(b, u), (i, m) 19.26 5 2.262 12.03 1.38 10.32 1.52 267(72) 
(a, t), (d, u) 23.65 5 2.50 8.51 1.92 5.8 2.33 295(79) 
(a, y), (i, d) 29.41 5 2.77 9.44 2.04 7.14 2.36 332(91) 

Table 5. 𝑰𝑫𝒏, 𝑰𝑫𝒆, and 𝑰𝑫𝒇 per A × W  in word repetition text entry tasks.

adopted in lieu of Fitts’ law in these applications The 
movement amplitudes, target widths and movement time 
in our three experiments were limited to finger touch 
interaction tasks on smart phones. We plan to investigate 
whether the dual distribution hypothesis holds with larger 
amplitudes and wider targets in the future. A novel part of 
the hypothesis is that 𝜎𝑎 is introduced to account for the 
finger’s absolute precision, which is an intrinsic 
characteristic of the finger and not dependent on the 
movement amplitude. Logically the dual distribution 
hypothesis and FFitts model are likely to hold for greater 
amplitudes as well.  

On a large touch surface, the target sizes are likely to be 
larger. The FFitts model suggests that the impact of the 
absolute finger precision component (𝜎𝑎) diminishes very 
quickly (due to the power function), so the FFitts model 
will converge with the conventional Fitts’ model quickly 
when the targets are larger. This smooth conversion is a 
potential strength of the dual distribution hypothesis. 

Although the absolute component, 𝜎𝑎 is obtained from a 
separated calibration task, it can be used to model other 
Fitts’ tasks for the same group of participants. 𝜎𝑎 reflects 
the absolute precision of finger input, which is 
independent of other task parameters. Assuming finger 
size and shape do not vary drastically across users, 𝜎𝑎 
could be used across users as an approximation. For 
example, we used the same 𝜎𝑎 in both Experiments 2 and 
3. FFitts law showed strong prediction power in both 
experiments. In fact, the participants in Experiment 3 
were different from those in the calibration task where 𝜎𝑎 
was obtained. We suggest that 0.94 and 1.5 mm are used 
as approximations for 𝜎𝑎  in 1D and 2D Fitts’ tasks 

respectively. This suggestion should also be empirically 
verified in future work. 

CONCLUSION  
To accurately model finger input for small target 
acquisition, we propose the dual distribution hypothesis, 
and derive the FFitts model, which is an expanded and 
refined form of Fitts’ law. It simplifies to the conventional 
form of Fitts’ law if the absolute precision factor 𝜎𝑎2  is 
negligible in comparison to the target size or the total 
variance in the task 𝜎2. Three experiments showed that 
the predictive power of FFitts law is superior to the 
conventional forms of Fitts’ law. Our investigation has 
led to the following conclusions.  

First, FFitts law is a strong model for predicting finger 
touch performance in small-sized target acquisition tasks.  
𝐼𝐷𝑓 , the index of difficulty of FFitts law, accounts for 
more than 91% of the time variance in all three 
experiments.  

Second, FFitts law has stronger predictive power than 
both the 𝐼𝐷𝑛  and 𝐼𝐷𝑒  models. FFitts law is especially 
more accurate than Fitts’ law using “effective width”. The 
R2 values of the 𝐼𝐷𝑓  model were 11% (1D tasks) and 
21.5% (2D tasks) higher than those of the 𝐼𝐷𝑒 model. 

Third, neither the 𝐼𝐷𝑛  or 𝐼𝐷𝑒 model is a strong model for 
finger input, especially the 𝐼𝐷𝑒  model.  𝐼𝐷𝑒  accounts for 
less than 80% of the time variance in 2D Fitts’ task. It 
suggests that the “effective width” adjustment might not 
be an appropriate choice for finger input.  

Fourth, the strong fit of the 𝐼𝐷𝑓  model validates the dual-
distribution hypothesis, which provides a more logical 
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and reasonable interpretation of the distribution of 
endpoints than the typical “effective width” interpretation. 

In summary, small target acquisition using finger touch 
input can be accurately modeled by FFitts law: 

𝑇 = 𝑎 + 𝑏 log2 �
𝐴

�2𝜋𝑒(𝜎2−𝜎𝑎2)
+ 1� ,            (13) 

where 𝜎  is the standard deviation of touch point 
distribution, and 𝜎𝑎 is the absolute precision of the input 
finger.  
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