
More than dotting the i’s — Foundations
for crossing-based interfaces

Johnny Accot Shumin Zhai
IBM Almaden Research Center

650 Harry Road, San Jose CA 95120, USA

{accot, zhai}@almaden.ibm.com

ABSTRACT
Today’s graphical interactive systems largely depend upon
pointing actions, i.e. entering an object and selecting it.In
this paper we explore whether an alternate paradigm — cross-
ing boundaries — may substitute or complement pointing
as another fundamental interaction method. We describe an
experiment in which we systematically evaluate two target-
pointing tasks and four goal-crossing tasks, which differ by
the direction of the movement variability constraint (collinear
vs. orthogonal) and by the nature of the action (pointing vs.
crossing, discrete vs. continuous). We found that partici-
pants’ temporal performance in each of the six tasks was de-
pendent on the index of difficulty formulated in the same way
as in Fitts’ law, but that the parameters differ by task. We also
found that goal crossing completion time was shorter or no
longer than pointing performance under the same index of
difficulty. These regularities, as well as qualitative character-
izations of crossing actions and their application in HCI, lay
the foundation for designing crossing-based user interfaces.

Keywords
Graphical user interfaces, interaction techniques, goal cross-
ing, goal passing, pointing, Fitts’ law, widgets, events, input,
input performance

INTRODUCTION
Modern human computer interfaces are based almost exclu-
sively on one type of motor actions — pointing. Loosely
speaking, pointing in human computer interaction consistsof
moving a cursor into a graphical object with an input device
and clicking a button (Figure 1.a). This simple sequence of
action constitutes the basic interaction scheme for designing
most traditional interactive widgets, such as buttons, menus,
scrollbars, and folders. Attempts have been made to create
alternative interaction techniques (e.g. ray/cone casting [5],
bounding box or target inclusion [8, 15], or gestures), but
pointing undoubtedly remains the most universal interaction
paradigm across diverse application domains and contexts.
However, pointing has a number of inherent drawbacks: for
instance, it may be time-consuming if the object to be pointed
is small; pointing-driven widgets can use a significant screen
real-estate; and some users find double click difficult to han-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2002, April 20-25, 2002, Minneapolis, Minnesota, USA.
Copyright 2002 ACM 1-58113-453-3/02/0004. . . $5.00.

dle because it requires rapid successive clicking actions with-
out accidentally moving the cursor position. Finding an inter-
action paradigm that improves performance or circumvents
the drawbacks of pointing thus remains a worthy challenge.
In this paper, we explore the possibility of using “crossing"
as such a paradigm.

Crossing events, which signal that the cursor intersected the
boundary of a graphical object (Figure 1.b), are already used
in modern interfaces, e.g. for detectingEnter/Leaveevents on
graphical objects. For another example, Ren and Moriya [12]
studied entering and leaving a button as alternative strategies
to clicking, and further pointed out the need of a theoretical
model for studying these strategies. We call the process of
moving a cursor beyond the boundary of a targeted graphical
object agoal-crossing task[1, 2].

(a) Pointing a target (b) Crossing a goal

Figure 1: Two different paradigms for triggering ac-
tions in a graphical user interface

Fitts’ law [3], a quantitative human performance model, has
provided a scientific foundation for studying and designing
pointing-based user interfaces. A similar scientific founda-
tion is needed if crossing is to be considered as another major
paradigm for interaction, particularly if we want to compare
the two paradigms systematically.

As a stepping stone towards devising the steering law, Ac-
cot and Zhai [2] found that goal-crossing indeed follows a
quantitative relationship among movement time, movement
distance, and the constraint of the goal width. In fact, sucha
relationship takes the same form as in Fitts’ law. More pre-
cisely, both the time needed to go and click on a target of
width W that lies a distanceD away (Figure 2.a), and the
time needed to cross a goal of widthW which lies a distanceD away (Figure 2.b) are given by:T = a+ b log2�DW + 1�| {z }

Index of difficulty (ID)

(1)

wherea andb are experimentally-determined psychological
constants. The logarithm factor in Equation 1 is called the
index of difficulty (ID) of the pointing or crossing task.

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

D W
(a) Pointing: variability is al-
lowed in the direction collinear
to movement

D W
(b) Crossing: variability is al-
lowed in the direction orthogo-
nal to movement

Figure 2: Pointing vs. crossing: the experimental
paradigms differ in the direction of the variability al-
lowed in the termination of the movement.

The above model discovered in [2] on goal-crossing consti-
tutes a necessary, but not a sufficient foundation for study-
ing and designing crossing-based interfaces. First, it is not
known if the coefficients in the above equation are identical
for pointing and crossing tasks. If not, using(ap; bp) and(a
; b
) to denote the pointing and crossing performance re-
spectively, how do these coefficients compare? Is it easier
to point a target than cross an equivalent goal? Does the
comparison depend on the index of difficulty? If crossing
provides a superior performance, how would it be used in
practice for the design of graphical interactive systems?

Upon examining the two tasks in Figure 2, we realized that
they vary in two dimensions. One of the differences is point-
ing vs. crossing. The other difference lies in the directionof
task constraint, either orthogonal or collinear to movement.
Because the two directions of constraint could exist in both
two tasks, we need a2� 2 factorial comparison.

One of these2 � 2 combinations is pointing with orthogo-
nal target constraint. Although pointing is typically studied
with collinear constraint, pointing with orthogonal constraint
does exist. For example (Figure 3), as noted by Tognazz-
ini [13], “Apple’s menu bar has, in essence, infinite height,
since the mouse pointer pins once it arrives.”The width of
these menu bars, however, is finite and hence become the
main constraint, albeit in the orthogonal direction to cursor
movement when the cursor is moved upwards to the menu
bars. Tognazzini further remarked that“the worst ‘feature’
of the Windows UI is their having the menu bar on line 2,
instead of at the top of the display. This makes menu bar
acquisition perhaps five to ten times slower than on the Mac-
intosh.” A model for pointing with orthogonal constraint,
particularly if made comparable to the traditional Fitts point-
ing task with collinear constraint, would put the comparison
between the menu bars in Macintosh and Windows on a more
scientific ground.

Pragmatically, crossing can be done in two ways: either dis-
cretely or continuously. When there is nothing between the
targeted goals, one can continuously stroke through these
goals (continuous crossing). On the other hand, when there
are non-target objects (distractors) between the individual
goals, one has to land the stylus (or finger) before an intended
goal, cross it, and then lift up (discrete crossing). We there-
fore investigated both discrete and continuous crossing ina
systematic study presented in the next section.

D
W

(a) The AppleR
 MacintoshR

menu bar

D W
(b) The MicrosoftR
 WindowsR

task bar

Figure 3: Accessing menu bar and task bar items on
the Macintosh and Windows

EXPERIMENT
Participants
Twelve people, three female and nine male, all right-handed,
participated in the experiment. They ranged in age from 21
to 51.

Apparatus
The experiment was conducted on an IBM PC running Linux,
equipped with a WacomR
 IntuosTM graphics tablet (model
GD-0608-U,20:3
m�15:2
m active area,2540 lpi resolu-
tion) and a 19” IBM CRT monitor (model P76,32
m�24
m
visual area,127 dpi resolution). The tablet active area was
mapped onto the display visual area, in absolute mode; the
control gain was close to1:6. The experiment was done in
full-screen mode, with a black background color. The com-
puter was running in single-user mode, with only a few active
system processes. It was disconnected from the network.

Procedure and design
Participants performed six different tasks, including twopoint-
ing tasks and four goal-crossing tasks. The two pointing
tasks differed in the direction of movement variability con-
straint — one collinear and the other orthogonal to the main
movement direction. The four goal-crossing tasks differed
by both the constraint direction (collinear/orthogonal) and
the nature of the action (discrete/continuous). The details
of each condition are as follows:

CP Pointing with collinear constraint(Figure 4.a): This is
the traditional Fitts’ tapping task [3]. Participants click
alternately on two vertical rectangles with widthW and
“infinite” height. The two target centers is separated by
distanceD. We call this task collinear pointing because
the variability constraint (W) imposed on the termina-
tion of the movement is in the direction collinear to the
hand movement.

OP Pointing with orthogonal constraint(Figure 4.b): This
is a variant of Fitts’ original tapping task. Participants
click alternately on two horizontal rectangles of heightW and “infinite” width (by one side), separated by dis-
tanceD measured by the gap between the two targets.
The variability constraint imposed on this task is in the
direction orthogonal to the movement. To our knowl-
edge, no performance model has been previously estab-
lished for this task (or for the next three tasks).

D/CC Discrete collinear crossing(Figure 4.c): Participants
alternately cross, by a stroke, two horizontal goals of
width W and distanceD. For consistency, they are
asked to perform the stroke downward for both goals.
This crossing task is discrete since the stylus tip touches
the tablet surface only when crossing the goal; the rest
of the time the stylus is lifted from the tablet surface.
An obstacle line, causing a beep when stroked through,
was drawn between the two goals to remind the partic-
ipants to use discrete strokes for crossing the goals.

D/OC Discrete orthogonal crossing(Figure 4.d): Partici-
pants alternately stroke through two vertical goals with
heightW and distanceD. They are asked to cross the
goals from left to right for consistency. As in the previ-
ous condition, an obstacle, i.e. a distractor, was drawn
between the two goals to remind participants to lift up
the stylus when traveling from one goal to the other.

C/CC Continuous collinear crossing(Figure 4.e): Partici-
pants alternately move the cursor through two horizon-
tal goals of widthW over distanceD. The crossing
task is called continuous as participants have to con-
stantly slide the stylus tip on the tablet surface. If the
stylus is lifted during a block of trials, the system will
beep until stylus-tablet contact is resumed.

C/OC Continuous orthogonal crossing(Figure 4.f): Partici-
pants move the cursor reciprocally through two vertical
goals of heightW over distanceD. Same as in con-
dition C/CC, the system will beep when the stylus is
lifted during a block of trials until stylus-tablet contact
is resumed. This task was introduced in [2] and found
to follow Fitts’ law when performed non-reciprocally.

In all six tasks, participants were asked to perform as fast
and as accurately as possible. When a target (or goal) was
missed, a beep was played to remind the participant to im-
prove accuracy. In case of a miss, participants continued the
trial until they hit the target. When hit, the target changed
color from green to orange. The time at which participants
successfully clicked on the target or crossed the goal was
recorded.

A within-subject full factorial design with repeated measures
was used. The independent variables were the task type(T =
CP, OP, D/CC, D/OC, C/CC, C/OC), the distanceD be-
tween targets or goals(D = 256; 1024 pixels) and the tar-
get/goal width(W = 8; 16; 32; 64; 128 pixels). For each
task, participants performed three consecutive sets of 10D-W combinations, the first set being a practice session and the
later two, data collection sessions. The tenD-W combina-
tions were presented in a random order within each session.
With eachD-W combination, participants performed a block
of 9 trials. The order of testing of the six different tasks was
balanced between six groups of participants according to a
Latin square.

Results and Analyses
Learning, Time and Error Figure 5 shows the average trial
time over the three experimental sessions. The average trial
completion time in the practice session was longer than the

D

WW
(a) CP — Pointing with
collinear variability constraint

D WW

(b) OP — Pointing with orthog-
onal variability constraint

�
�
�
�
�

�
�
�
�
�D

WW
(c) D/CC — Discrete collinear
goal-crossing

�
�
�
�
�

�
�
�
�
�D WW

(d) D/OC — Discrete orthogo-
nal goal-crossing taskD

WW
(e) C/CC — Continuous
collinear goal-crossing

D WW
(f) C/OC — Continuous orthog-
onal goal-crossing

Figure 4: The six tested conditions. All tasks were
reciprocal.

time in the two data-collection sessions, due to participants’
inexperience and occasional experimentation with the tablet-
stylus device and task strategy. The performance difference
between the two data-collection sessions was relatively small,
and hence both were used in the following data analyses.

Variance analysis showed that mean trial completion times
were significantly different across the six tasks(F5;55 =12:5; p < :001). TaskC/CCwas the slowest (see Figure 5).
TasksOPandC/OCwere the fastest, at least 10% faster than
other tasks. The rest of the tasks, including the traditional
Fitts’ tapping task, fall in the middle range of performance.

12
00

11
00

10
00

90
0

80
0

Practice First block Second block

CP
OP
D/CC
D/OC
C/CC
C/OC

T
im

e
(ms)

Figure 5: Learning effect on average completion time

As illustrated in Figure 6.a, movement distance significantly
changed mean trial completion(F1;11 = 898; p < :0001).
Across all tasks, the greater the distance between targets,the
longer time duration of the trial. As illustrated in Figure 6.b,
target/goal width also significantly changed mean trial com-
pletion (F4;44 = 485; p < :0001). For all tasks, the greater
the width of the target, the shorter the duration of the trial.

(a)

60
0

70
0

80
0

90
0

11
00

50
0

256 1024

CP
OP
D/CC
D/OC
C/CC
C/OC

Distance between targets/goals (pixels)

T
im

e
(ms)

(b)

40
0

60
0

80
0

14
00

10
00

8 16 32 64 128

CP
OP
D/CC
D/OC
C/CC
C/OC

Target/goal width (pixels)

T
im

e
(ms)

Figure 6: Effect of distance and width on task com-
pletion time

The error rate, measured by the percentage of trials that took
more than one click or crossing to hit the target, varied signif-
icantly with task(F5;55 = 7:76; p < :0001), target distance(F1;11 = 16:6; p < :01) and target width(F4;44 = 38:2;p < :0001). As expected, smaller and more distant targets
tended to cause more errors. As shown in Figure 7, except for
TaskC/CC (9:2%), all new tasks studied in this experiment
had error rates close to and lower than that of Fitts’ tapping
task(CP, 7:6%). D/OChas the lowest error rate with2:8%.

8
6

4
2

0

CP OP D/CC D/OC C/CC C/OC

A
ve

ra
ge

nu
m

be
r

of
er

ro
rs

(%
)

Figure 7: Error rates for each task

When participants made an error in a trial (missing the tar-
get), they were asked to continue the trial until they hit the
target, with multiple clicks or multiple crossing attempts.
The completion time of these trials does not reflect the same
perceptual motor mechanism as successful trials without er-
ror; hence we did not include them in the time analysis in
this section. As an extra caution for the robustness of the

conclusions, we also repeated all time-related analyses with
the error trial completion times included, but found no impor-
tant or qualitative differences from the conclusions reported
in this section.

Lawful Regularities Most interestingly, the movement time
in each and every of the six tasks could be largely accounted
for by the target-distance to target-width ratio. More pre-
cisely, the difficulty in each task can be qualified by the fol-
lowing common index:ID = log2�DW + 1� (2)

and the movement time can be determined by:T = a+ b ID (3)

where a and b are empirically determined in each task. Specif-
ically, linear regression of the experimental data resulted in
the following equations (all time values in this paper are in
milliseconds):

CP: T = 103 + 172� ID r2 = 0:998 (4)

OP: T = 145 + 146� ID r2 = 0:986 (5)

D/CC: T = 155 + 165� ID r2 = 0:994 (6)

D/OC: T = 342 + 133� ID r2 = 0:975 (7)

C/CC: T = �41 + 242� ID r2 = 0:995 (8)

C/OC: T = �196 + 235� ID r2 = 0:984 (9)

In other words, there was a lawful regularity between move-
ment time andD=W ratio in each of the six tasks. Further-
more, all six laws take the same form of logarithmic transfor-
mation ofD=W ratio as in Fitts’ law, with very high fitness
values (r2 ranging from0:975 to :998).

Figure 8 displays the regression lines of completion time as
a function ofID. As we can see, despite the very different
constraints and varying action patterns across the six tasks,
the laws of these tasks all fall into a band that is even nar-
rower than the range of data based on the same Fitts’ tapping
task reported by different authors in the literature (see [9]).

15
00

10
00

50
0

0

2 3 4 5 6 7

CP

OP

D/CC

D/OC

C/CC

C/OC

T
im

e
(ms)

ID (bits)

Figure 8: The fit to the model for the six studied tasks

Task Comparison Although relatively small, there were im-
portant differences between the six tasks studied in this ex-
periment. Due to space limitations, we report only the anal-
yses of a few comparisons most relevant to human-computer
interaction tasks (illustrated by Figure 9).

First, TaskOP, i.e. pointing with orthogonal constraint, had
similar performance to TaskCP, i.e. pointing with constraint
collinear to the movement direction (the traditional Fitts’ tap-
ping task). On average,OP was 10% faster thanCP (Fig-
ure 5). As displayed separately in Figure 9.a, starting from
essentially zero, the difference betweenOPandCPincreased
with Index of Difficulty. It appeared that variability con-
straints orthogonal to the pointing movement direction is “eas-
ier” to deal with than constraints in the same direction as the
movement. This is plausible because the former can be dealt
with in the entire course of movement, while the latter can
only be controlled at the very end of the movement. The
greater theID (either smaller width or greater distance), the
more pronounced this effect (seeCP and OP lines in Fig-
ure 6.a).

Second, the two discrete crossing tasks, with collinear and
orthogonal constraint respectively, followed similar regres-
sion lines to the standard Fitts’ tapping task, as separately
shown in Figure 9.b, suggesting that it is possible to substi-
tute pointing tasks with crossing tasks with essentially the
same time but lower error rate (see Figure 7). Between the
two discrete crossing tasks, there was a trade-off swung byID. D/OC tended to be faster thanD/CC when ID was
greater than6 bits, and the reverse was true whenID was
less than5 bits. The fact thatD/OC was slower thanD/CC
in low ID can be partially explained by the “obstacle” line
positioned between the two goals (see Figures 4.c and 4.d).
As the distance between the two goals reduces, the constraint
of landing the stylus between the obstacle and the right goal
increases. Implicitly there is a traditional Fitts’ tapping task
(CP) involved here with increasing difficulty. This is not true
to theD/CC task because the stylus always lands above the
horizontal goals. This effect is partly an experimental ma-
nipulation artifact, and partly a reflection of realistic situa-
tions in computer interfaces where the target object can be
surrounded by objects that are not targets at the moment.

Another large difference between the two discrete crossing
tasks was that much smaller number of errors were made
with theD/OC task than with theD/CC task.

Third, there was a trade-off betweenC/OCandD/OC tasks
(Figure 9.c).C/OCwas much faster thanD/OCwhenID was
much lower than5 bits, andC/OC was longer thanD/OC
whenID was greater than5 bits. This again was partly due
to the obstacle effect in theD/OC task. There was no obstacle
in theC/OCtask. When the two goals were very close to each
other, it was possible to cross the two in one stroke. This is an
advantage that should be taken in interface design whenever
possible.

Fourth, theC/CC task was uniformly slower than theC/OC
task (Figure 9.d). It also has the highest error rate (Figure7).
This suggests that, whenever possible, the goals to be crossed
should be positioned orthogonal to the movement direction.

(a)

15
00

10
00

50
0

0

2 3 4 5 6 7

CP
OP

ID (bits)

T
im

e
(ms)

(b)

15
00

10
00

50
0

0

2 3 4 5 6 7

CP
D/CC
D/OC

ID (bits)
T

im
e

(ms)

(c)

15
00

10
00

50
0

0

2 3 4 5 6 7

OP
D/OC
C/OC

ID (bits)

T
im

e
(ms)

(d)

15
00

10
00

50
0

0

2 3 4 5 6 7

C/CC
C/OC

ID (bits)

T
im

e
(ms)

Figure 9: Tasks comparisons

Note on the OP task
TheOP task can be parameterized in two ways. The one we
used, which defines the movement amplitude as the distance
between the two edges of the horizontal targets (Figure 4.b),
has the advantage of being closer to the orthogonal goal-
crossing tasks. But it also has a drawback: when perform-
ing the task, the actual movement amplitude is a little higher
than the one controlled in the experiment, possibly making
the pointing task more difficult than predicted. A way to
cope with this issue is to introduce the concept of effective
amplitude, similar to the idea of effective width (see [9]),
and use the average actual movement amplitude to compute
the difficulty of the task. The drawback of this method is that
the difficulty is computeda posteriori, which goes against
the idea ofa priori performance modeling and prediction. A
second way is to change the definition of distance between
targets. A definition that appears particularly suited is toadd
half a target width on both sides of the movement amplitude
in Figure 4.b, as illustrated by Figure 10. This new definition
has an increased compatibility with theCPtask (Figure 4.a):
whenD is equal toW , the two targets are adjacent and the
task consists in merely jumping over a single line from one
target to the other; whenD is equal to0, the two targets
are partially overlapping, and the task can be performed by
clicking repeatedly without even moving. This definition of
theOP task may then be more adequate for comparing per-
formance within the pointing task class. With this definition
of movement amplitude, the linear regression between time
and index of difficulty is:

OP?: T = 75 + 158� ID r2 = 0:992 (10)

The fitness is even greater than the one of Equation 5, sug-
gesting that the variant definition may be a more appropriate
model. If we use this model, conclusions regardingOP task
in relation to others in this paper are qualitatively the same
but quantitatively stronger.D

W2
W

Figure 10: A variant of theOP task, with a different
measure of movement amplitude

APPLICATIONS AND DISCUSSION
As with other laws of natural phenomena, the regularities of
human movement revealed in this study can be applied in
ways and scope beyond expectations at the time of discovery.
In this section we explore only a few obvious implications
of these movement laws to the design of human computer
interfaces.

The OP task and the primacy of border locations
As we found in the experiment, anOP task takes the same
or less time than aCPtask for the same amount of constraintW (Figure 4.a, 4.b, Figure 9). This can be very informative
to interface designers. When choosing the orientations and
locations of interaction objects (widgets), they can use this
empirical relationship to estimate the impact of their choices.

Consider for instance the two pointing tasks shown in Fig-
ure 3 and discussed in the Introduction section. For the Mac-
intosh menu bar (Figure 3.a), the menus are virtually in-
finitely extended beyond the edge of the screen where the
mouse cursor is stopped. The primary pointing variability
constraint being orthogonal to the movement direction, point-
ing at these menus is anOP task, modeled by Fitts’ law withaOP = 75 and bOP = 158 (Equations 1 and 10). On the
other hand, since the buttons of the Windows task bar are not
pushed onto the very edge of the screen, the pointing task
has both orthogonal and collinear constraints (see Figure 3).
The collinear variability allowed here is much smaller than
the orthogonal one, such that pointing a button is mainly a
CP task (see also [6, 10, 11, 14]) and modeled by Fitts’ law
with aCP = 103 andbCP = 172 (Equations 1 and 4). Now let
us assume we want to select an item of width160 pixels and
height40 pixels1. Then, for a movement distance ofD, the
time to select a Macintosh menu item is:T = 75 + 158 log2� D160 + 1� (11)

while the time to select a Windows task button is:T = 103 + 172 log2�D40 + 1� (12)

These two time models, plotted in Figure 11, clearly show
the advantage of the Macintosh menu bar over the Windows
task bar, the former being about twice as fast as the latter for
most amplitudes.

1000

1000

800

800

600

600

400

400

200

200

0
0

Macintosh menu bar (Equation 11)
Windows task bar (Equation 12)

DistanceD (pixels)

T
im

e

T(ms)

Figure 11: Comparison of the access time for the
Macintosh menu bar and the Windows task bar

This simple exercise shows the primacy of the border loca-
tions of the computer screen real estate. Widgets on the bor-
der locations should take the maximum advantage of extend-
ing beyond where the cursor stops. To take another example,
scrollbars on the very edge of screen should also extend be-
yond the screen pixels.

Note that fundamentally all 2D widgets are constrained in
two dimension and pointing at these targets is ultimately “bi-
variate”. The above analysis focuses on only the primary

1 As a reference, a standard task button in MicrosoftR
 Windows NTR

has a width of320 pixels and a height of44 pixels.

constraint, which is valid only when the objects are elon-
gated. For objects that are close square, more empirical work
is needed (see [10] for a previous investigation).

Crossing Interfaces
Perhaps the most important HCI implications of the current
study is a paradigm of interaction based on goal crossing in-
terfaces where the basic interactive widget is a goal (1D bar)
instead of target (2D area). Just as Fitts’ law in the Fitts’ tap-
ping task has served as a foundation for analyzing pointing
based interface, the laws of goal-crossing tasks can be the
basis for designing and analyzing interfaces based on goal
crossing (Figure 12.a).

,
(a) To trigger an action: on
the left we push the button;
on the right we cross the
goal.

#,
(b) Unlike a traditional check
box, a goal can “store” two visual
states depending on the crossing
direction.

Figure 12: Using goal-crossing in graphical widgets

Quantitatively, as the results of the experiment show, there
are situations where user performance in goal-crossing tasks
is superior to that of target-pointing tasks. Depending on the
idiosyncrasies of the particular cases, user interface designs
can be grounded on the relative pros and cons of different
types of pointing or crossing tasks. In some cases pointing
is preferred; in other cases, a particular type of crossing (dis-
crete or continuous) is preferred.

Qualitatively, crossing — a continuous action occurring more
often in the natural world than discrete pointing and click-
ing — affords some unique characteristics. First, crossing
can be bi-directional (Figure 12.b). This means that richer
semantics can be assigned to crossing than pointing. Fur-
ther, it is also possible to cross a goal back and forth once
(double crossing) or even more than once to represent a va-
riety of commands. Indeed, in some sense crossing is a step
from pointing towards free gesturing, which is even richer
but harder to quantify and disambiguate than crossing.

Another characteristic of crossing is that multiple goals can
be crossed in a cascaded fashion. Such an application can
in fact be found in existing software products. For example,
in Lotus NotesR
, multiple messages can be selected by one
continuous cursor drag, crossing a series of implicit goals
(Figure 13). To select many messages that are not consecu-
tive, one can first select a whole set of continuous messages,
and then deselect the ones that are not wanted. Such mixed
pointing and crossing performance can be quantified by a
combination of the laws discussed in the previous section. In
comparison, using pointing alone to select multiple messages
would require very precise and repetitive pointing actions. It
is possible to use a bounding box technique to select multiple
targets and then use pointing to activate all of them, but this
is less fluid than one continuous crossing stroke.

Figure 13: Selection of multiple messages by a con-
tinuous goal-crossing action in Lotus Notes

While it is possible to have both orthogonal and collinear
crossing, our experiment clearly showed the advantage of or-
thogonal crossing. Figure 14 illustrates the possibility of dy-
namically orienting the goals towards the cursor to maximize
this advantage (a “sunflower” interface, so to speak).

��������
��������
��������
��������

(a) As the cursor moves, ...

��������
��������
��������
��������

(b) ... the goal rotates to offer max-
imum width

Figure 14: Dynamically orienting goals may mini-
mize crossing time for any cursor position

It should be noted that pointing and crossing do not have to
be mutually exclusive. It is in fact possible to have a “dou-
ble representation” interface where both actions are enabled.
To select individual objectsa, b, or
 in Figure 15, the user
can either point and click on the circles or cross the links,
depending on subjective preference. To select a group of ob-
jects, the user may cross multiple links in one stroke, taking
advantage of the cascading property of crossing.

a b

(a) Pointing at targets

a b

(b) Crossing the arcs

Figure 15: Input polymorphism: choosing the input
method that is best suited to the context

Special application domains of crossing interfaces
While goal-crossing based interaction techniques can be used
in any graphical user interface, there are several applications
to which they are particularly suited.

One follows the idea of double representation for univer-
sal accessibility of interfaces. Some users have gotten used
to pointing and will continue their habitual mode of action.
Others, including some elderly users and users with certain
motor disability may have difficulty with clicking without
moving the cursor position, or worse, double clicking. For
these users crossing may become the main interaction mode.

The second domain of special application is interfaces for
mobile or handheld devices. These devices usually come

with a stylus (pen), which is more suited for crossing ac-
tions than a mouse. Furthermore, double-click with a stylus
is often very difficult for any user. The more compact rep-
resentation of bars or links in a goal crossing interface also
requires less of the small screens in these devices.

Third, the text of hyperlinks in web pages are especially dif-
ficult for pointing due to the their narrow height (one line of
text) but easy for crossing due to the much greater width of
(one word long and often much longer). It is also possible to
cross a list of links in a cascade (Figure 16). This in fact has
been demonstrated in the “Elastic window” prototype [7].

Figure 16: Crossing multiple city names to get their
detailed weather forecast

Finally, traditional GUI widgets are very difficult to be in-
tegrated in virtual reality type of 3D interfaces, partly be-
cause point and click is necessarily dependent on a solid 2D
surface. In contrast, 1D goals (bars) can be easily crossed
(“chopped”) without having to be on a 2D surface. Similarly,
actions may be triggered when crossing a 2D surface, like a
door or portal (e.g. [4]).

CONCLUSION
In this paper, we studied human performance in both point-
ing and crossing tasks, with systematic variations in terms
of task difficulty, the direction of movement constraint, and
the nature of the task (discrete vs. continuous). We found a
robust regularity among trial completion time, distance be-
tween targets, and the target width in all six tasks studied.If
we refer to natural laws by their mathematical appearance,
we can say all of the six tasks follow Fitts’ law. If we refer
to natural laws by the task (or phenomenon) they describe,
we can say there is a law to each of the six tasks. Many
subjective impressions, such as the superior usability of the
menus on the screen border, can be in fact quantified by some
of these laws. Most significantly, together with the qualita-
tive characterizations of the crossing action, these laws lay
the foundation for designing crossing-based user interfaces
in which crossing, instead of or in addition to pointing, is the
fundamental interaction technique.

ACKNOWLEDGMENTS
We would like to thank Barton A. Smith, Paul Mauglio and
Teenie Matlock for their helpful comments on this work.

REFERENCES
1. J. Accot. Les Tâches Trajectorielles en Interaction

Homme-Machine — Cas des tâches de navigation. PhD
thesis, Université de Toulouse 1, France, January 2001.

2. J. Accot and S. Zhai. Beyond Fitts’ law: models for
trajectory-based HCI tasks. InProceedings of ACM

CHI’97 Conference on Human Factors in Computing
Systems, pages 295–302, 1997.

3. P. M. Fitts. The information capacity of the human
motor system in controlling the amplitude of move-
ment. Journal of Experimental Psychology, 47:381–
391, 1954.

4. M. Haisenko and P. Musgrave. The 3Dsia project.
http://threedsia.sourceforge.net, 2001.

5. K. Hinckley, R. Pausch, J. C. Goble, and N. F. Kassell.
A survey of design issues in spatial input. InProceed-
ings of the ACM Symposium on User Interface Software
and Technology, pages 213–222, 1994.

6. E. R. Hoffmann and I. H. Sheikh. Effect of varying
target height in a Fitts’ movement task.Ergonomics,
37(6):1071–1088, 1994.

7. E. Kandogan and B. Shneiderman. Elastic windows: A
hierarchical multi-window world-wide web browser. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, pages 169–177, 1997.

8. A. Leganchuk, S. Zhai, and W. Buxton. Manual and
cognitive benefits of two-handed input: An experimen-
tal study. ACM Transactions on Computer-Human In-
teraction, 5(4):326–359, Dec. 1998.

9. I. S. MacKenzie. Fitts’ law as a research and design
tool in human-computer interaction.Human-Computer
Interaction, 7:91–139, 1992.

10. I. S. MacKenzie and W. Buxton. Extending Fitts’ law to
two-dimensional tasks. InProceedings of ACM CHI’92
Conference on Human Factors in Computing Systems,
pages 219–226, 1992.

11. A. Murata. Extending effective target width in Fitts’
law to a two-dimensional pointing task.International
journal of human-computer interaction, 11(2):137–
152, 1999.

12. X. Ren and S. Moriya. Improving selection perfor-
mance on pen-based systems: a study of pen-based
interaction for selection tasks.ACM Transactions on
Computer-Human Interaction, 7(3):384–416, 2000.

13. B. Tognazzini. Club Wired — Bruce Tognazzini Tran-
script. http://hotwired.lycos.com/talk/
club/special/transcripts/95-06-14.
tog.html, June 1995.

14. N. Walker and J. B. Smelcer. A comparison of selection
times from walking and pull-down menus. InProceed-
ings of ACM CHI’90 Conference on Human Factors in
Computing Systems, pages 221–225, 1990.

15. S. Zhai, W. Buxton, and P. Milgram. The “silk cur-
sor”: Investigating transparency for 3D target acquisi-
tion. In Proceedings of ACM CHI’94 Conference on
Human Factors in Computing Systems, pages 459–464,
1994.

