March 3, 2012: Draft March 21, 2012: Release

Microcontroller Workshop Build your own products

The University of Tokushima Akinori Tsuji

Contact Information : 2-1, Minamijyosanjima-cho, Tokushima 770-8506, Japan TEL/FAX : +81-88-656-7485 E-mail: : a-tsuji@is.tokushima-u.ac.jp

Agenda

- 1. Why the microcontrollers
- 2. How to start
- 3. How it works

4. Programming I/O Port, A/D Converter, Timer, Interrupt, Serial Communication

- 5. Sensors and Actuator Light, Touch, Temperature, Motor
- 6. Building a Robot (* if possible)

Set up development environment

Estimate: 2 hours

2012/3/21(Wed) 10:00-12:00

1. Why the Microcontrollers

A microcontroller is everywhere around you, but everyone does not notice them

1.1 Motivation

A microcontroller covers a lot of fields and applications, use your imaginative power

1.2 Inside of the Products

We open and found it !

Digital TV

Mini Projector

Portable Game Machine

Digital Video Camera

Blu-ray Recorder

Courtesy of NikkeiBP

1.3 Embedded System

An Embedded System includes the aspect of hardware and software

You are here

GUI applications, Operating System APIs, Libraries, Drivers

Development tools for microcontroller include;

- Cross Compiler, Linker, Assembler,

- Debugger

Development board includes;

- Microcontroller and other ICs
- Programmer, is a tool for writing program

Embedded System

2. How to start

A microcontroller does not have so much resources to develop on itself

2.1 Development Tools

2.2 Setup the development tools

Download and install development tools:

AVR Studio 4 and AVR Toolchain is a development environment

- <u>http://www.atmel.com/tools/AVRSTUDIO4.aspx</u>
- AVR Writer is to write a program (USBasp) of a microcontroller

- USBasp Writer

Tera Term is to communicate with a microcontroller

- <u>http://sourceforge.jp/projects/ttssh2/releases/</u>

Arduino is software for easy to program on a microcontroller

- <u>http://arduino.cc/hu/Main/Software/</u>

Processing is software for easy to develop a GUI interface

- http://www.processing.org/download/

These are free software without warranty

2.2.1 Install AVR Studio & Toolchain

- 1. Double click "avr-toolchain-installer-3.3.0.710-win32.x86.exe"
- 2. Follow the installation wizard
- 3. Double click on "AVRStudio4Setup.exe"
- 4. Follow the installation wizard

Mar 3, 2012, The University of Tokushima, Akinori Tsuji

2.2.2 Install TeraTerm

- 1. Double Click on "teraterm-4.7.3.exe"
- 2. Choose language English
- 3. Follow the installation wizard

2.2.3 Install Arduino

- 1. Extract the archive "arduino-1.0-windows.zip"
- 2. Move arduino-1.0 to C:¥
- 3. Make a short cut of C:¥arduino-1.0¥arduino.exe
 - Right click on arduino.exe
 - Create a shortcut
- 4. Move the short cut file to the Desktop and rename "arduino"

ᅇ sk	.etch_n	nar18a A	irduino '	0.1	
File	Edit	Sketch	Tools	Help	
0	0		2		Part and a second s
sł	etch_	mar18a			
Π					<u> </u>

2.2.4 Install Processing

- 1. Extract the archive "processing-1.5.1.zip"
- 2. Move processing-1.5.1 to C:¥
- 3. Make a short cut of C:¥processing-1.5.1¥processing.exe
 - Right click on processing.exe
 - Create a shortcut
- 4. Move the short cut file to the Desktop and rename "processing"

2.3 Setup the development board

Development board: -Compatible with Arduino,

-Programmer

Bread board:

- Rapid prototyping
- Solderless

Courtesy of Akizukidenshi

2.3.1 Development Board

Akinori Tsuji

2.3.2 Power Supplies

From PC via the USB Port (USB) MAX: 500mA

From Adapter or Battery (EXT)

Short Pin to change power source, EXT or USB

Mar 3, 2012, The University of Tokushima, Akinori Tsuji

2.3.3 Arduino Bootloader

Write the Arduino Bootloader (Only first time)

- 1. Connect a USB cable to the board
- 2. Connect the USBasp Writer to the ICU connector on the board
- Check Serial Port Number
 System -> Control Panel -> Device Manager -> Port (COM and LPT)
- 4. Run Arduino
- 5. Tools -> Serial Port -> COMx
- 6. Tools -> Programmer -> USBasp (Set Writer)
- 7. Tools -> Boards -> Duemilanove w/ Atmega328 (Set Board definition)
- 8. Tools -> Run Bootloader

It takes about one minutes to complete the process

- 9. Remove the USB cable
- 10. Remove the USBasp Writer

2.3.4 Board Test (1/5)

Run a test program, Blink a LED on the board

- 1. Run Arduino
- 2. File -> Examples -> 1:Basics -> Blink

🧙 sketch_mar11a Arduino 1	.0		_ 🗆 🗵
File Edit Sketch Tools	Help		
New	Ctrl+N		
Open	Ctrl+O		
Sketchbook	•		
Examples	Þ	1.Basics 🕨 🕨	AnalogReadSerial
Close	Ctrl+₩	2.Digital 🕨 🕨	Bare Minimum 🛋
Save	Ctrl+S	3.Analog 🕨 🕨	Blink
Save As	Ctrl+Shift+S	4.Communication 🕨	DigitalReadSerial
Upload	Ctrl+U	5.Control	Fade
Upload Using Programmer	Ctrl+Shift+U	6.Sensors	

2.3.4 Board Test (2/5)

2.3.4 Board Test (3/5)

Akinori Tsuji

2.3.4 Board Test (4/5)

LED connected to Pin(13) is Blinking

Mar 3, 2012, The University of Tokushima, Akinori Tsuji

2.3.4 Board Test (5/5)

Save Project

- 1. File -> Save As
- 2. Save as Project name: Blink (*1)

😎 Blink Arduino 1.0			
File Edit Sketch Tools	Help		
New	Ctrl+N		0.
Open	Ctrl+O	E	
Sketchbook	•		-
Examples	•		
Close	Ctrl+W		▲
Save	Ctrl+S		
Save As	Ctrl+Shift+S	en off for one second, repeatedly.	
Upload	Ctrl+U		
Upload Using Programmer	Ctrl+Shift+U	main.	

(*1) Project is saved to under the MyDocuments¥Arduino¥Blink folder Source code is saved as Blink.ino in the Blink folder If you want to delete the project, just remove the Blink folder

2.4 Parts

2.4 Parts (continued)

2.4.1 Label of Parts

	1 st 2 nd 3 rd Band
	Black 0 0 x 1 Example) Resistor
ALL AND A	Brown 1 1 x 10 Brown Black Red
	Red 2 2 x 100 1 0 x 100 = $1000 \Omega = 1 k\Omega$
Posistor	Orange 3 3 x 1000 (k) 1 st 2 nd 3 rd
NESISLUI	Yellow 4 4 x 10000
	Green 5 5 x 100000 Example) Potentiometer
- 46-	Blue 6 6 x 1000000 (M) 1 0 3 = 10 x 10^3 = 10kg
	Violet 7 7 1 st 2 nd 3 rd
T	Gray 8 8
Dotontiomotor	White 9 9
Potentiometer	Silver/Gold 10%/5% (Tolerance)
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Ceramic capacitor	10 = 10 pF Courtesy of Akizukidensh
	Mar 2, 2012, The University of Tekuchima

2.5 Using the Breadboard

For Power Supply (Vcc or GND)

2.5.1 Schematic

Ex) LED circuit

2.5.2 LED power supply from Arduino

Programming the Microcontroller 1

Estimate: 2 hours

2012/3/22(Wed) 10:00-12:00

Agenda

- 1. How it works
 - Specification, Arduino, Pin Assignment, Work Flow
- 2. Embedded System Programming
 - Polling, Polling and Interrupt, Interrupt
 - Peripherals
 - Data Types
- 3. I/O Port

1 How it works

Courtesy of Atmel Corp.

1.1 Specification

Atmel, AVR Atmega 328P

ROM: 32kB RAM: 2kB EEPROM: 1kB Frequency: 16 MHz Power supply: 5V (or 3.3V) 28 pin PDIP package Function: Digital I/O x9, 8-Bit Timer x2, 16-Bit Timer x1, PWM Channel x6, 10-Bit ADC x5, Serial UART x1, SPI x1

1.2 Arduino

Arduino development environment

- has started developing in Italy
- easy to use for beginners, no need software or electronics experience
- C / C++ language
- IDE (Integrated Development Environment)
- APIs

1.3 Pin Assignment for Arduino

1. Make a circuit on the bread board

Note: DO NOT SHORT +5V and GND

2. Connect a circuit to the development board by wire

Note: DO NOT SUPPLY POWER

- 3. Programming on the PC
- 4. Connect a USB cable to the PC (Power Supply)
- 5 Upload a program to the microcontroller

2 Embedded System Programming

Basic structure

Polling

Interrupt function

Interrupt requested from internal or external hardware

MCU has to do an interrupt function Immediately even if a polling function Is not finished.

Interrupt

2.1 Polling

2.2 Polling and Interrupt

2.3 Interrupt

2.4 Peripherals

Application (Arduino)							
APIs							
Drivers							
I/O	I/O A/D Timer Ext. Interrupt USAR		USART	SPI/I2C			
Microprocessor							

2.5 Data tyeps

	Numeric types	Bytes	Range	Use	
	int	2	-32768 to 32767	Represents positive and negative integer values.	
	unsigned int	2	0 to 65535	Represents only positive values; otherwise, similar to int.	
	long	4	-2147483648 to 2147483647	Represents a very large range of positive and negative values.	
	unsigned long	4	4294967295	Represents a very large range of positive values.	
Not available or	float	4	3.4028235E+38 to - 3.4028235E+38	Represents numbers with fractions; use to approximate real- world measurements.	
Compiler emulation	double	4	Same as float	In Arduino, double is just another name for float.	
to take a time to	boolean	1	false(0) or true(1)	Represents true and false values.	
calculate	char		-128 to 127	Represents a single character. Can also represent a signed value between –128 and 127.	
	byte	1	0 to 255	Similar to char, but for unsigned values.	
	Other types	Use			
	String void	Represents arrays of chars (characters) typically used to contain text. Used only in function declarations where no value is returned.			

3 I/O port

I/O Port = **Digital** Input / Output port

has Direction, Input or Output. handles 0 or 1, Voltage level: High or Low level

LAB1: I/O Port (Output)

LAB2: I/O Port (Output)

BlinkPin13: Declare the pin assignment

```
const int ledPin = 13;
```

```
void setup() { // Initialize peripherals
    pinMode(ledPin, OUTPUT);
}
```

```
void loop() { // Infinite loop
digitalWrite(ledPin, HIGH); // set the LED on
delay(1000); // wait for a second
digitalWrite(ledPin, LOW); // set the LED off
delay(1000); // wait for a second
}
```


On board LED

LAB3: I/O Port (Output)

```
BlinkPin12: Make an LED circuit on the board
                                                                           +5V
Connect the circuit to the Pin(12)
const int ledPin = 12;
                                                                  Sink
void setup() { // Initialize peripherals
 pinMode(ledPin, OUTPUT);
void loop() { // Infinite loop
 digitalWrite(ledPin, LOW); // set the LED on
              // wait for a second
 delay(1000);
                                                   Polling function
 digitalWrite(ledPin, HIGH); // set the LED off
 delay(1000); // wait for a second
}
```

LAB4: I/O Port (Output)

BlinkFunc: Use a function

```
const int ledPin = 12;
```

```
void setup() { // Initialize peripherals
pinMode(ledPin, OUTPUT);
}
void loop() { // Infinite loop
blink(1000);
}
void blink(int ms) {
digitalWrite(ledPin, LOW); // set the LED on
delay(ms); // wait for a second
digitalWrite(ledPin, HIGH); // set the LED off
delay(ms); // wait for a second
}
```


Using a function and a declaration is to keep portability, easy to modify, and well understand the code

LAB5: I/O Port (Input)

Example) Push switch and LED

Push Switch

Switch state	Voltage Level	Digital Value			
ON	LOW	0			
OFF	HIGH	1			

Sample Code

PushSwitch: Push switch and LED

```
const int switchPin = 12;
const int ledPin = 13;
```

```
void setup() {
```

pinMode(switchPin, INPUT); // digital pin as an input pinMode(ledPin, OUTPUT); // digital pin as an output }

```
void loop() {
    if (digitalRead(switchPin) == LOW) {
        digitalWrite(ledPin, HIGH); // set the LED on
    } else {
        digitalWrite(ledPin, LOW); // set the LED off
    }
```


LAB6: I/O Port (Input and Output)

BlinkSwitch: While a switch is pushed, blinking faster

```
const int switchPin = 12;
const int ledPin = 13;
```

```
void setup() {
```

pinMode(switchPin, INPUT); // digital pin as an input pinMode(ledPin, OUTPUT); // digital pin as an output }

```
void loop() {
   static int ms = 1000;
   if (digitalRead(switchPin) == LOW) {
      blink(ms); // set the LED on
      ms -= 50;
      if (ms == 0) ms = 1000;
   }
}
```


I/O Port

Programming the Microcontroller 2

Estimate: 2 hours 2012/3/29(Thu) 10:00—12:00

Agenda

- 1. A/D Converter
- 2. Timer Interrupt
- 3. External Interrupt
- 4. Serial Communication

1 A/D converter

10-Bit Analog to Digital Converter Analog signal, 0 to 5 V, converts digital value 0 to 1023(2^10-1)

1.1 Resolution

Analog signal, 0 to 5 V, converts digital value 0 to 1023(2^10-1)

1.2 Sampling Frequency

A/D converter: sampled an analog signal followed the sampling frequency

1.2 Sampling Frequency

A/D converter: sampled an analog signal followed the sampling frequency

1.2 Sampling Frequency

A/D converter: sampled an analog signal followed the sampling frequency

LAB1 A/D converter

Example) Potentiometer

Potentiometer

Circuit diagram

LAB1: LED and Potentiometer

SensorIn: Turn on/off the LED depends on the voltage of a potentiometer

```
const int potPin = A0; // select the analog input pin for the potentiometer
const int ledPin = 13; // select the pin for the LED
```

```
void setup() {
    pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT:
}
```

```
void loop() {
    int potValue = 0; // variable to store the value coming from the sensor
```

```
potValue = analogRead(potPin); // read the value from the sensor:
digitalWrite(ledPin, HIGH); // turn the ledPin on
delay(potValue); // stop the program for <potValue> milliseconds:
digitalWrite(ledPin, LOW); // turn the ledPin off:
delay(potValue); // stop the program for <potValue> milliseconds:
```

LAB2: LED and Potentiometer

```
float vol = 5.0 * ain / 1024;
```

Sensorin: Turn on the LED more than 2.5V

```
const int potPin = A0; // select the analog input pin for the potentiometer
const int ledPin = 13; // select the pin for the LED
```

```
void setup() {
    pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT:
}
```

```
void loop() {
    int potValue = 0; // variable to store the value coming from the sensor
```

```
potValue = analogRead(potPin); // read the value from the sensor:
if (potValue >= 512) {
    digitalWrite(ledPin, HIGH); // turn the ledPin on
} else {
    digitalWrite(ledPin, LOW); // turn the ledPin off:
}
Mar 3, 2012, The University of Tokushima,
```

Akinori Tsuji

2 Timer Interrupt

MSTimer2 Library

- Extract the archive "MsTimer2.zip".
 Move MsTimer2 folder to C:¥arduino-1.0¥libraries
 Run Arduino
 File -> Examlpes ->
- MsTimer2 -> FlashLed

🥯 sketch_mar22a Arduino 1.	0				- 🗆 🗵
File Edit Sketch Tools	Help				
New	Ctrl+N				
Open	Ctrl+O				
Sketchbook	•		_	i.	-
Examples	Þ	1.Basics	•		_
Close	Ctrl+W	2.Digital			
Save	Ctrl+S	3.Analog			
Save As	Ctrl+Shift+S	4.Communication	•		
Upload	Ctrl+U	5.Control	•		
Upload Using Programmer	Ctrl+Shift+U	6.Sensors	•		
Page Setup	Ctrl+Shift+P	7.Display	•		
Print	Ctrl+P	8.Strings			
	Curri	ArduinoISP			
Preferences	Ctrl+Comma	EEPROM	•		
Quit	Ctrl+Q	Ethernet	•		
		Firmata	•		
		LiquidCrystal	•		
		MsTimer2		FlashLed	
		SD	1		

LAB3: Timer Interrupt

TimerInt: Turn on and off the LED every 500 ms

```
#include <MsTimer2.h>
const int ledPin = 13;
// ISR: Interrupt service routine
void flash() {
   static boolean output = HIGH;
   digitalWrite(ledPin, output);
   output = !output; // toggle the LED
   }
void setup() {
   pinMode(ledPin, OUTPUT);
   }
```

```
MsTimer2::set(500, flash); // 500ms period, attach an interrupt service routine
MsTimer2::start(); // Timer starts
}
void loop() {
// Nothing to do
}
Mar 3, 2012, The University of Tokushima,
Akinori Tsuji
```

3 External Interrupt

3.1 External Interrupt

LAB4: External Interrupt

ExternalInt: Toggle the LED when the switch has pushed

```
const int ledPin = 13;
                                                        Falling Edge
const int intPin0 = 2; // interrupt 0, pin(2)
volatile int state = LOW;
void setup()
 pinMode(ledPin, OUTPUT);
 digitalWrite(intPin0, HIGH); // set HIGH state
 pinMode(intPin0, INPUT);
 attachInterrupt(0, isrSwitch, FALLING); // switch pin on interrupt 0 (pin 2)
void loop() {
 digitalWrite(ledPin, state);
void isrSwitch() {
 state = !state; // NO delay function in the interrupt function
}
```

4 Serial Communication

Receive/Transmit some characters between the PC and the microcontroller

UART = Universal Asynchronous Receiver Transmitter

LAB5: Send data to PC

SendChar: Send characters by the print function

```
void setup() {
                                                    Tools -> Serial Monitor (Set 57600 baud)
 Serial.begin(57600);
                                                    💿 COM8
                                                                                                           - 🗆 ×
}
                                                                                                           Send
                                                     10Hello World
void loop()
                                                     10Hello World
                                                     10Hello World
{
                                                     10Hello World
                                                     10Hello World
   int n = 10;
                                                     10Hello World
                                                     10Hello World
   Serial.print(n);
                                                     10Hello World
   Serial.println("Hello World");
                                                     10Hello World
                                                     10Hello World
}
                                                     10Hello World
                                                     10Hello World
                                                     10Hello World
                                                     10Hello World
                                                     10Hello World
                                                     10Hello World
                                                                                     No line ending 💌 57600 baud 💌
                                                     Autoscroll
```
LAB6: Receive data from PC

RcvChar: Blink the LED when MCU received a character

```
const int ledPin = 13;
```

```
void setup() {
   Serial.begin(57600);
   pinMode(ledPin, OUTPUT);
}
```

```
void loop()
```

}

```
// Check if at least one character is available
if (Serial.available()) {
```

```
char ch = Serial.read(); // read one character
```

```
blink(500); // blink LED
```

```
Serial.println(ch); // loop back the character
```

Tools -> Serial Monitor

Enter characters and click on the "Send" Button

abcd	Send
а	
b	
c	
d	
1000 A	No line and in E2000 hand

Data Acquisition

DataAcq: Read the output voltage of a potentiometer

const int sensorPin = A0; // select the input pin for the potentiom ϵ

```
void setup() {
   Serial.begin(57600);
}
```



```
void loop() {
```

int sensorValue ; // variable to store the value coming from the sensor

```
sensorValue = analogRead(sensorPin); // read the value from the sensor:
float volt = sensorValue * 5.0 / 1024; // converts to the voltage
Serial.println(volt);
```

- 1. Run TeraTerm
- 2. Choose Port COMxx: USB Serial Port and Click OK

Tera Term: New co	onnection		×
● TCP/ĮP	Host is is to I Hist Service: ○ Teln © <u>S</u> SH	okushima-u.ac.jp ory ret TCP port#: 2 1 SSH version: SSH	2
● S <u>e</u> rial		Protogol: UNS 28: USB Serial Port (COM ancel Help	PEI <u>▼</u> 28)▼

4. Setup the Port as the following setting

<u>3</u> aud rate:	57600 💌	
<u>D</u> ata:	8 bit 💌	Cancel
P <u>a</u> rity:	none 💌	
<u>S</u> top:	1 bit 💌	Help
Elow control	none 💌	

3. Setup -> Serial Port

🖳 CC)M28:57	7600bau	d - Tera T	erm VT		
<u>F</u> ile	<u>E</u> dit	<u>S</u> etup	Control	Window	Help	
sens sens	or =	<u>T</u> erm <u>W</u> ind	iinal ow		7	
sens sens	or =	<u>F</u> ont. <u>K</u> eyb	 oard		7	
sens sens	or =	S <u>e</u> ria SS <u>H</u> .	l port		7 17	

5. Data is coming from the microcontroller

🖳 CC	DM28:96	i00baud	- Tera Te	rm VT	
<u>F</u> ile	<u>E</u> dit	Setup	Control	Window	Help
sens	or =	527	out	put =	131
sens	or =	528	out	put =	131
sens	or =	528	out	put =	131
sens	or =	528	out	put =	131
sens	or =	528	out	put =	131
sens	or =	528	out	put =	131
sens	or =	528	out	put =	131
sens	or =	529	out	put =	131
sens	or =	527	out	put =	131
sens	or =	528	out	put =	131
sens	or =	528	out	put =	131
sens	or =	528	out	put =	131

1. Get data from sensors

🖳 COM	28:9	600baud	- Tera Te	rm VT		
<u>F</u> ile <u>I</u>	dit	Setup	Control	Window	Help	
senso	r =	527	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	529	out	put =	131	
senso	r =	527	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	528	out	put =	131	
senso	r =	528	out	put =	131	
		E00		1	1.01	

2. File -> log

🖳 CC)M28:5	7600baud	i - Tera T	erm VT		
<u>F</u> ile	<u>E</u> dit	<u>S</u> etup	Control	Window	<u>H</u> elp	
<u>N</u> e D <u>u</u> Cy	w conn plicate gwin co	ection session onnection	Alt+N Alt+D n Alt+G			
Loe	ş					
C <u>o</u> ⊻i∈	mment :w Log	to Log		T		

3. Save as CSV file <filename>.csv and Click on the Save

era Term: Log				? ×
保存する場所の:	🞯 デスクトップ	•	000	<u>بي</u> و
□マイ ドキュメント マイ コンピュータ マイ ネットワーク 死 Oygwin の Mozilla Thunde 」 VMware Works	rbird tation			
•				Þ
ファイル名(N):	teraterm.log			保存(S)
ファイルの種類(工):	All(*.*)		-	キャンセル
				ヘルプ(円)
Option				
Einary	Append	🔽 Plain text		
— •	El ser la s			

4. Data logging is started

Filename:	teraterm.log	
Fullpath:	C:\Documents an	d Settings\a
3ytes trans	fered:	23897

5. Stop logging by click on the Pause

Mar 3, 2012, The University of Tokushima,

Akinori Tsuji

6. Open a log file by Excel and plot the graph

Example) Characteristics of the potentiometer

Sensors and Actuators

Estimate: 2 hours 2012/4/2(Mon) 10:00—12:00

1 Sensors and Actuators

Measured by Sensors

Filter (Analog or Digital)

Datasheet

Device name Features **Applications** Packages **Pin Assignment Absolute Maximum Ratings Characteristics Block Diagram Timing Chart** Samle Circuit Notes

SHARP

GP2Y0A21YK/GP2Y0D21YK

GP2Y0A21YK/ GP2Y0D21YK

Features

1. Less influence on the color of reflective objects, reflectivity 2. Line-up of distance output/distance judgement type Distance output type (analog voltage) : GP2Y0A21YK Detecting distance : 10 to 80cm Distance judgement type : GP2Y0D21YK Judgement distance : 24cm (Adjustable within the range of 10 to 80cm [Optionally available]) 3. External control circuit is unnecessary 4 Low cost

General Purpose Type Distance Measuring Sensors

Outline Dimensions

2 Temperature Sensor

National Semiconductor LM60BIZ Output: Analog Operating Voltage: DC 2.7V – 10V Measurement Temperature: -25 deg. -- +125 deg. 6.25 mV / deg.

Torrelance: $\pm 2 \text{ deg.}$ (@ 25 deg.)

Temperature (T)	Typical Vo
+125°C	+1205 mV
+100°C	+1049 mV
+25°C	+580 mV
0°C	+424 mV
–25°C	+268 mV
-40°C	+174 mV

2.1 Measure the temperature

Sample Code

TempMeas: Read the output voltage of the temperature sensor

```
const int analogInPin = A0; // Analog input pin that the temperature sensor is connected int sensorValue = 0; // value read from the temperature sensor
```

```
void setup() {
    // initialize serial communications at 57600 bps:
    Serial.begin(57600);
}
```

```
void loop() {
   sensorValue = analogRead(analogInPin);
   float Vo = sensorValue * 5000.0 / 1024; // converts to Voltage (mV)
   float T = (Vo - 424) / 6.25; // converts the temperature (Centigrade Degree)
```

Serial.println(T); // print the results to the serial monitor:

delay(10); // wait 10 miliseconds for the AD converter to settle after the last reading

Measurement Result

Temperature (No filter)

Sample Code (with filter)

TempMeasWithFilter: Read the output voltage of the temperature sensor

```
const int analogInPin = A0; // Analog input pin that the temperature sensor is connected
const int N = 16; // Sample number for average filter
int sensorValue = 0; // value read from the temperature
void setup() {
 Serial.begin(57600);
void loop() {
 float T;
 T = 0.0;
 for (int i=0; i<N; i++) {
  sensorValue = analogRead(analogInPin);
  float Vo = sensorValue * 5000.0 / 1024;
                                                       Average filter
  Vo = (Vo - 424) / 6.25;
  T += Vo:
  delay(10);
 Serial.println(T / N);
 delay(500);
                              Mar 3, 2012, The University of Tokushima,
                                         Akinori Tsuji
```

Measurement Result (With Filter)

Temperature (N = 16)

3 Light Sensor

Photo Transistor

JRC NJL7502 Peak Sensitivity 560 nm Optical Current 33 uA

Package

Vout = 100k * loptlopt = Vout * $10 [\mu V]$

3.1 Illuminance

Sample Code

PhotoTrans: Read the output voltage of the temperature sensor int sensorPin = A0; // select the input pin for the potentiometer

```
void setup() {
  Serial.begin(57600);
}
```

}

```
void loop() {
    int sensorValue ; // variable to store the value coming from the sensor
```

```
sensorValue = analogRead(sensorPin); // read the value from the sensor:
float volt = sensorValue * 5.0 / 1024; // converts to the voltage
Serial.println(volt);
delay(50); Example) in the room
```

```
Voltage output is Vout =1 [V], then photo
current is lopt=10[uA]. From the photo
current & illuminance graph, get the 60 [lx].
```

4 Photo Interrupter

5 PSD Sensor

PSD (Position Sensitive Devices) Sensor Sharp Measuring Sensor GP2Y0A21YK

Output: Analog

Detecting Distance: 10 cm – 80 cm Operating Voltage: DC 4.5 V – 5.5 V

Akinori Tsuji

5.1 Timing Chart

To get a correct output you must wait at least 38.3 ms + 9.6 ms + 5.0 ms = 52.9ms after power up

Sample Code

```
const int analogInPin = A0; // Analog input pin that the potentiometer is attached to
```

```
// initialize serial communications at 57600 bps:
Serial.begin(57600);
delay(52);
```

```
void loop() {
    sensorValue = analogRead(analogInPin);
```

```
float dist = 220000 / (sensorValue * 5.0 - 200); // converts to distance (mm)
```

```
Serial.println(dist);
delay(10);
```

}

Measurement Result

Distance (mm)

6 Servo Motor

Servo Motor: GWS PICO/STD/F Weight: 5.4 g Torque: 0.7 kg Speed: 0.12 sec / 60 degrees Size: 22.8 x 9.5 x 16.5 mm

Pin Assignment

6.1 Servo Motor

Akinori Tsuji

Courtesy of Embedded Robotics

Sample Code

```
#include <Servo.h>
Servo myservo; // create servo object to control a servo
int val; // variable to set the servo (0--179)
void setup() {
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
void loop() {
 val = 90; // center 90 degree
 myservo.write(val); // sets the servo position
 delay(15); // waits for the servo to get there
 delay(1000);
 val = 30; // left -60 degree
 myservo.write(val);
                            // sets the servo position according to the scaled value
            // waits for the servo to get there
 delay(15);
 delay(1000);
 val = 150; // right +60 degree
 myservo.write(val);
                            // sets the servo position according to the scaled value
            // waits for the servo to get there
 delay(15);
 delay(1000);
                           Mar 3, 2012, The University of Tokushima,
                                     Akinori Tsuji
```

Measurement Result

DS0-X 2012A, MY51451616: Mon Apr 02 09:26:35 2012

7 LCD

LCD SC162B

Number of Characters: 16 Character x 2 lines Drive Method: 1/5 bias, 1 / 16 duty Operating Voltage: 4.5V – 5.5V Back Light: LED

Pin 1 2 3 4 5 6 7 8 9 10 11 12

LiquidCrystal(rs, enable, d4, d5, d6, d7)

Pin assignment	Arduino Pin
1 Vss (GND)	
2 Vdd (+5V)	
4 RS	D12
5 R/W(GND)	
6 E	D11
11 DB4	D5
12 DB5	D4
13 DB6	D3
14 DB7	D2

7.1 Timing Chart

Sample Code

```
#include <LiquidCrystal.h>
```

```
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // RS, E, D4, D5, D6, D7
```

```
void setup() {
    // set up the LCD's number of columns and rows:
    lcd.begin(16, 2);
    // Print a message to the LCD.
    lcd.print("hello, world!");
}
```

```
void loop() {
    // set the cursor to column 0, line 1
    // (note: line 1 is the second row, since counting begins with 0):
    lcd.setCursor(0, 1);
    // print the number of seconds since reset:
    lcd.print(millis()/1000);
}
```

8. Small Robot

