2009年度 総合科学部 自然システム学科 数理·情報コース 学部課程 — 2年(前期)

数学基礎I

教授・大渕 朗

2単位

目的

現代数学に於いては集合をまず考え,その上で様々な数学的構造を考えると言った記述の仕方が多い.その中で最も基本的な物の1つである位相構造について講義するのがこの授業の目的である.位相構造について解説する為には集合論の知識が必要であるが,ここでは集合論の解説は必要最小限にとどめるつもりである.

概要

位相空間論の基礎

注意

特にありません.

目標

1.1.集合と論理の概念が正しく理解出来る.
2.2.ϵ-δ論法が正しく理解出来る.
3.3.位相空間の基礎的な概念が正しく理解出来る

計画

1.授業は以下の内容を行うつもりである.
2.·数学的な論理について·全称命題と存在命題·集合と集合の演算
3.·写像,全射及び単射について·選択公理などについて(概説)
4.·数列と収束·数列と収束·関数の極限·関数の連続性
5.·位相空間の定義·様々な位相空間の定義について·連続写像

評価

学期末試験,レポート,中間試験,授業への取り組み状況,などを基に総合的に評価する.

再評価

原則として行わない

教科書

当授業は教科書を用いないで上記の内容を講義するが,講義内容の作成に当たっては下記を強く意識している.

参考書:松阪和夫 『集合·位相入門』 岩波書店

連絡先

大渕(088-656-7297, ohbuchi@ias.tokushima-u.ac(no-spam).jp)
オフィスアワー: 水曜日5·6講時または昼休み(11:50-12:50),大渕研究室(総合科学部一号館二階)としますが,この時間以外でも質問は原則として受け付けます.E-mail: ohbuchi@ias.tokushima-u.ac.jp